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Review of FiMa I and motivation of FiMa II

▶ Definition discrete-time financial model S̄ = (S0
t ,St)t=0,1,...,T

▶ Wealth dynamics from selffinancing strategies

▶ Absence of arbitrage characterized by FTAP

▶ Arbitrage-free contingent claim prices

▶ Complete and incomplete markets

▶ (Super-)replication

▶ Primer on continuous-time Black-Scholes model: Ito isometry,
Ito processes, Ito formula, Girsanov change of measure, . . .

But:

▶ No really relevant financial models in FiMa I: essentially only
binomial CRR-model

▶ Conceptual gaps in continuous-time Black-Scholes theory:
completeness, merely mathematically convenient description
of strategies, . . .
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Part I

Foundations of continuous-time financial

models
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Outline of Part I: Foundations of continuous-time financial
models

Gains, losses and stochastic integration

Ito’s formula: trend and volatility

No arbitrage and martingale measures

Pricing and Hedging
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Continuous-time financial models

▶ (Ω, (Ft),P) filtered probability space (stochastic basis)

▶ S̄ = (S0
t , St)t∈[0,T ] rightcontinuous stochastic process with

left limits (càdlàg , RCLL) describing price evolution of
numéraire S0 > 0 and risky asset(s) St ; adapted to

▶ (Ft)t∈[0,T ] filtration describing information flow

▶ ξ̄ = (ξ0t , ξt)t∈[0,T ] predictable process describing investment
strategy

? What is “predictable” supposed to mean in continuous time?

! There is no “next” or “previous” period any more!

? How are we to interpret continuous-time trading in practical
terms where positions can be changed rapidly, but not
continually?

? How to describe profits and losses from continuous trading
mathematically?
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Simple strategies

All these questions are very easy to answer for simple strategies
of the form

ξ̄t =
n∑

i=1

ξ̄Ti
1(Ti−1,Ti ](t), t ∈ [0,T ],

for finite stopping times

0 =: T0 ≤ T1 ≤ · · · ≤ Tn := T

specifying n periods (Ti−1,Ti ] over which the positions are held
constant:

ξ̄Ti
∈ FTi−1

; fixed at beginning of period, non-anticipative,

namely just as in discrete time!

Remark
It will be convenient in our discussion to focus on a finite time
horizon T ∈ [0,∞). Much of what we will have to say will be
valid—mutatis mutandis—also for T = ∞ though.
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PnL from selffinancing simple strategies

Selffinancing condition for simple strategies:

ξ̄Ti
S̄Ti

= ξ̄Ti+1
S̄Ti

, i = 1, . . . , n − 1.

In discounted quantities

X̄ := (X 0,X ) := S̄/S0 = (1,St/S
0
t )t∈[0,T ] ; discounted asset prices

V := V ξ̄ := ξ̄X̄ ; discounted wealth

this means that, with v := ξ̄T1 S̄0 denoting the initial wealth,

Vt = V v ,ξ
t := v +

n∑
i=1

ξTi
(XTi∧t − XTi−1∧t)︸ ︷︷ ︸

=:Gt(ξ) gains from trading by time t

, t ∈ [0,T ],

describes the discounted wealth evolution for a selffinancing and
simple strategy ξ̄.

? How to extend the definition of V or G to continually
changing ξ̄?
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Consistent and stable gain process specifications

Want: Consistent and stable extension of

ξ 7→ G (ξ)

to as large a class of strategies ξ as possible.

? What do we mean by “consistent” and “stable”?

▶ “consistent”: restriction to simple strategies yields above
specification

▶ “stable”: continuity property in the sense that similar
strategies ξ ≈ ξ′ should yield similar gains G (ξ) ≈ G (ξ′)

? Continuity in what sense?

Mathematically natural (and to some extent also natural from a
financial-economic perspective) continuity requirement:

sup
t∈[0,T ]

|ξnt − ξt | → 0 uniformly, i.e., in L∞(P)

⇒ Gt(ξ
n) → Gt(ξ) in probability for each t ∈ [0,T ].
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Bichteler-Dellacherie Theorem

Theorem
The continuity requirement

sup
t∈[0,T ]

|ξnt − ξt |
L∞(P)−→ 0 ⇒ Gt(ξ

n)
P→ Gt(ξ) for each t ∈ [0,T ]

holds for simple ξn and ξ if and only if the adapted càdlàg process
X is a so-called semimartingale, i.e., of the form

Xt = Mt + At , t ∈ [0,T ],

for a local martingale M and an adapted process A with
right-continuous paths of bounded variation.

Upshot: A model X for discounted asset prices has to be specified
as a semimartingale in order to have stability of gains processes in
the above (mild?) sense.
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Processes of bounded variation

A càdlàg process A is of bounded variation if almost surely

TVT (A) := sup
0=t0≤t1≤···≤tn=T , n∈N

n∑
i=1

|Ati − Ati−1 | <∞.

Lemma
A càdlàg process A is of bounded variation if and only if it can be
written as the difference

At = A↑
t − A↓

t , t ∈ [0,T ],

of two nondecreasing càdlàg processes A↑, A↓. These are uniquely
determined if we insist on the minimality requirement
TVT (A) = A↑

T + A↓
T (Hahn-decomposition).

More on this in our exercise class.
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(Local) martingales

Recall: A process (Mt) is a martingale, if Mt ∈ L1(P) for each t
with

E [Mt |Fs ] = Ms for any s ∈ [0, t].

Definition
A process (Mt) is a local martingale if it is locally a martingale in
the sense that there is an increasing sequence of stopping times
T n ↗ ∞, a so-called localizing sequence, such that each stopped
process

MT n
= (MT n

t ) with MT n

t (ω) := MT n(ω)∧t(ω), n = 1, 2, . . . ,

is a martingale. The class of local martingales will be denoted by
Mloc; continuous local martingales are collected in Mc,loc.

Remark: We will later get to see local martingales which are not
martingales (i.e., strict local martingales).
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Stochastic processes in continuous time

Technical problem:

? Is MT for a finite stopping time T actually measurable with
respect to FT ?

! Yes, but we need M to have right-continuous (càd) paths and
also (Ft) to be right-continuous.

Indeed: For right-continuous M we have

MT = lim
n

∑
k

M k+1
n
1[ k

n
, k+1

n
)(T )︸ ︷︷ ︸

∈F
T+ 1

n

∈
⋂
n

FT+ 1
n
=: FT+

!
= FT .

Fortunately, under the “usual hypotheses” of right-continuity and
completeness of the filtration we can assume martingales to be
right-continuous without too much loss . . .
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Modifications and indistinguishability

Lemma
Under the usual hypothesis, any local martingale M has a càdlàg
modification, i.e., there is M̃ with càdlàg paths and

P[Mt = M̃t ] = 1 at any time t.

This modification is unique up to indistinguishability in the sense
that any alternative M̃ ′ satisfies

P[M̃t = M̃ ′
t at any time t] = 1.

! Note that it is not even clear whether the set
{ω ∈ Ω : Mt(ω) = M̃t(ω) for all t} is measurable for a not
necessarily càdlàg martingale M. So talking about
indistinguishability of M from another process M̃ will typically
only make sense after choosing the above nice version.
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Proof of uniqueness up to indistinguishability
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Word of caution

! Beware of statements almost surely involving uncountably
many statements because exceptional nullsets may pile up to
a no longer negligible set.

Good news: We leave these intricacies for courses on stochastic
analysis to sort out and in fact will make sure that we will most of
the time only deal with processes which even have continuous
sample paths (almost surely).
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No arbitrage and martingale measures
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PnL and integration

? How to exend the definition of

Gt(ξ) =
n∑

i=1

ξTi
(XTi∧t − XTi−1∧t) =:

∫ t

0
ξsdXs

to continually changing ξ?

! We need to define integrals∫ t

0
ξsdXs

beyond simple integrands.

But: This is easier said than done in a relevant way for financial
mathematics as will transpire from our next result!



I.1.2-1

Pathwise integration almost incompatible with no arbitrage

Lemma
If we insist on defining the stochastic integral pathwise in the sense
that for ξn, ξ with |ξn| ≤ 1, |ξ| ≤ 1 we have

Gt(ξ
n)

P→ Gt(ξ) for each t ∈ [0,T ] on

{
sup

t∈[0,T ]
|ξnt − ξt | → 0

}

then X must be of bounded variation: X = 0 + A, and in this case
the Lebesgue-Stieltjes integral

Gt(ξ) :=

∫ t

0
ξsdAs :=

∫
[0,t]

ξsµ(ds), t ∈ [0,T ],

w.r.t. to the signed measure µ with “distribution function”
µ([0, s]) = As , s ∈ [0,T ], will yield the extension.

Upshot: Defining a PnL pathwise when stock prices fluctuate like
for a (geometric) Brownian motion is impossible.
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Proof

Via Banach-Steinhaus Theorem: Exercise on first problem set.
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If we dispense with this stability, we will still want no
arbitrage—and again are led to semimartingales

The stability requirement of Bichteler-Dellacherie is
mathematically convenient, but not the only one conceivable from
a financial-economic point of view.

This is very different for the notion of arbitrage though.
Remarkably Delbaen and Schachermayer (1994) show that

mildly more than “no arbitrage” implies X is a semimartingale

More precisely, the condition “no free lunch with vanishing risk for
simple integrands” suffices to conclude that X is a semimartingale:

L∞-closure{g ∈ L∞ : g ≤ GT (ξ) for a simple ξ} ∩ L∞+ = {0}.

Upshot: Wouldn’t it be lovely if we could integrate with respect
to local martingales M as well?
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The space of square integrable martingales

Lemma
The set

M 2 := {M : M càdlàg martingale with E[M2
t ] <∞, t ∈ [0,T ]}

is a Hilbert-space with scalar product and norm given by

(M,N)M 2 := E[MTNT ] and ∥M∥M 2 := ∥MT∥L2(P).

We have the equivalence of norms

∥M∥M 2 ≤ ∥ sup
t∈[0,T ]

|Mt |∥L2(P) ≤ 2∥M∥M 2 for any M ∈ M 2

and the class

M 2
c := {M : M is a square-integrable continuous martingale}

is a closed subspace of M 2.
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Proof
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Quadratic variation

? For M ∈ M 2, what is the compensator of the
submartingale M2?

Theorem
For any M ∈ M 2, there is an adapted, right-continuous, increasing
process [M] such that for any refining sequence of stopping time
partitions

τN = {0 = TN
0 ≤ · · · ≤ TN

nN
= T}, N = 1, 2, . . . ,

with smaller and smaller mesh size

∥τN∥ := sup
i=1,...,nN

|TN
i − TN

i−1|
P→ 0.

we have

sup
t∈[0,T ]

∣∣∣∣∣
nN∑
i=1

(MTN
i ∧t −MTN

i−1∧t
)2 − [M]t

∣∣∣∣∣ P→ 0.
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Quadratic variation (ctd.)

Theorem (ctd.)

Moreover, the process [M] compensates M2 in the sense that
M2 − [M] is a martingale and we have

∥M∥2M 2 = ∥M0∥2L2(P) + E [ [M]T ] .

Finally, if M is continuous, so is [M].

Definition
The process [M] of the above theorem is called the quadratic
variation of M.

Remark
Our discussion of Brownian motion M = W last term has
established that its quadratic variation is [M]t = t.
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Proof postponed

The proof is postponed as it draws on ideas which we will use in
greater generality (and arguably greater transparency) in our
construction of stochastic integrals.
Even then we will only deal with the case of a continuous local
martingale. As we will see at the end of this section, it essentially
amounts to the construction of our first nontrivial stochastic
integral, namely

∫ t
0 Ms−dMs .
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Back to our extension problem

We need to extend the definition of I (ξ) :=
∫ .
0 ξsdMs beyond

simple integrands

ξs =
n∑

i=1

ξTi
1(Ti−1,Ti ](s), s ∈ [0,T ],

with stopping times 0 = T0 ≤ T1 ≤ · · · ≤ Tn = T and
ξTi

∈ FTi−1
, for which we keep insisting on

It(ξ) := IMt (ξ) :=
n∑

i=1

ξTi
(MTi∧t −MTi−1∧t), t ∈ [0,T ].

This will become possible by two key observations on the structure
of such integrals which will hold for integrands in

S := {ξ is of the above simple form and bounded}.



I.1.3-6

Key observation I: Martingale property preserved

Lemma (Preservation of martingale property)

If M is a martingale and ξ ∈ S is simple and bounded, also
IM(ξ) =

∫ .
0 ξsdMs is a martingale.

Remark
This can be viewed as a continuous-time version of Doob’s system
theorem and, in fact, its proof essentially amounts to just that.
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Proof
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Key observation II: Ito’s isometry

Lemma (Ito isometry)

For square-integrable M ∈ M 2 and bounded, simple ξ, also
IM(ξ) =

∫ .
0 ξsdMs is in M 2, and we have the isometry

∥IM(ξ)∥M 2 = ∥
∫ T

0
ξsdMs∥L2(P)

!
= ∥ξ∥L2(P⊗d [M]) := E[

∫ T

0
ξ2s d [M]s ]

1/2.

Remark
The measure P⊗ d [M] is the measure on Ω× [0,T ] defined by

(P⊗ d [M])[A] :=

∫
Ω

∫ T

0
1A(ω, s)d [M]s(ω)P(dω), A ∈ FT ⊗ B([0,T ]).

This measure has finite total mass

(P⊗ d [M])(Ω× [0,T ]) = E[ [M]T ] = E[(MT −M0)
2] <∞.
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Proof
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Isometric extension of the stochastic integral

Theorem
For M ∈ M 2, the mapping

S ∋ ξ 7→ IM(ξ) =

∫ .

0
ξsdMs ∈ M 2

has a unique continuous (and linear) extension to

L2(M) := L2(P⊗ d [M])-closure(S ) = L2(Ω× [0,T ],P,P⊗ d [M])

where P := σ(S ) is the so-called predictable σ-field.
For ξ ∈ L2(M), IM(ξ) =

∫ .
0 ξsdMs ∈ M 2 is a square-integrable

martingale satisfying Ito’s isometry

∥IM(ξ)∥M 2 = ∥
∫ T

0
ξsdMs∥L2(P) = ∥ξ∥L2(P⊗d [M]) = E[

∫ T

0
ξ2s d [M]s ]

1/2.

Finally, if M ∈ M 2
c is continuous, so is IM(ξ) for ξ ∈ L2(M).
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Proof
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Definition of the stochastic integral

Definition
For ξ ∈ L2(M) and M ∈ M 2, the process IM(ξ) =

∫ .
0 ξsdMs ∈ M 2

is called the stochastic integral of ξ w.r.t. M.

Remark
Note that we have defined this integral not in a pathwise manner,
but by a limit in the Hilbert-Space M 2 ≈ L2(P) and so it
seemingly depends on the measure P. Indeed, it will later be
important to understand that this is not really the case, at least up
to equivalent changes of measure.
Right now of course, any attempt at this hits a road block right
away when we observe that the martingale property of the
integrator M ∈ M 2 = M 2(P) obviously depends strongly on P.
So, we need to be able to integrate against more than martingales.
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Construction of quadratic variation for a continuous
L2-martingale

Theorem
For M ∈ M 2

c , the sequence of stopping time partitions
τ̄N = {0 = T̄N

0 ≤ T̄N
1 ≤ · · · ≤ T} given for N = 1, 2, . . . by

T̄N
0 := 0, T̄N

i := inf{t ≥ T̄N
i−1 : |Mt −MT̄N

i−1
| ≥ 2−N} ∧ T , i = 1, 2, . . . ,

is such that there is an adapted, continuous, increasing process
[M] with

sup
t∈[0,T ]

∣∣∣∣∣∣
∑

i=1,2,...

(MT̄N
i ∧t −MT̄N

i−1∧t
)2 − [M]t

∣∣∣∣∣∣ P→ 0.

Moreover, M2 − [M] is a continuous martingale and we have

∥M∥2M 2 = ∥M0∥2L2(P) + E[ [M]T ].
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Proof
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Observation

An inspection of the above proof, shows that the construction of
[M] is accomplished via a “hands on” construction of the
stochastic integral It =“

∫ t
0 Ms−dMs”=

1
2(M

2
t − [M]t) (i.e.,

independently from our general construction above, but of course
using some of the key ideas we also use there).

The need to construct an iterated integral like
∫ .
0 Ms−dMs to

develop an integration theory is not at all coincidental, but in fact
the key insight behind what is called rough path integration theory
as discovered and developed by Terry Lyons since the 90s. This
field has since seen tremendous growth and actually spurred the
theory of regularity structures for which Martin Hairer was awarded
the Fields Medal in 2014.
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Convenient localization of continuous local martingales

By definition, a local martingale M ∈ Mloc has a localizing
sequence of stopping times (Tn) such that MTn is a martingale.
But it may not have a localizing sequence that ensures even
MTn ∈ M 2—and so extending our stochastic integral by
localization becomes rather tricky in general.

Fortunately, things are a lot easier for continuous local martingales
M ∈ Mc,loc because for these we can choose

Tn := inf{t : |Mt | ≥ n}, n = 1, 2, . . . ,

for which MTn is even uniformly bounded: |MTn
t | ≤ n, t ∈ [0,T ].

We therefore will confine ourselves to extending the
stochastic integral to integrators M ∈ Mc,loc.
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Quadratic variation of continuous local martingales

Theorem
For a continuous local martingale M ∈ Mc,loc, we can consistently
define [M] on [0,T ] by putting

[M]t := [MTn ]t on {t ≤ Tn}, n = 1, 2, . . . ,

where (Tn)n=1,2,... is any localizing sequence with MTn ∈ M 2
c .

Moreover, [M] is the unique continuous, adapted increasing
process starting in [M]0 = 0 for which M2 − [M] is a continuous
local martingale.

Definition
The process [M] is called the quadratic variation of the continuous
local martingale M ∈ Mc,loc.

Example

For a Brownian motion W we have [W ]t = t.
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Proof

Lemma
If a continuous local martingale M ∈ Mc,loc has finite variation
TVT (M) <∞, then it is constant:

Mt ≡ M0, t ∈ [0,T ].
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Proof
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Relation between [M] and ⟨M⟩

Remark
As a continuous, adapted process, [M] for M ∈ Mc,loc is
predictable. It thus coincides with what is known as the predictable
quadratic variation ⟨M⟩ which is defined as the unique predictable,
increasing process A starting in 0 such that M2 − A ∈ Mloc—if
such a process exists. Existence of such an A = ⟨M⟩ can be shown
for some merely càdlàg martingales, for which, however, it typically
differs from [M].
Fortunately, we will not have to worry about any of that because
we will (essentially) always deal with continuous processes and so
both bracket process

[M] = ⟨M⟩

can be used interchangeably.
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Proof
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Stochastic integration w.r.t. continuous local martingales

Theorem
For M ∈ Mc,loc and ξ ∈ L2(M) := L2(P⊗ d [M]), letting

IMt (ξ) :=

∫ t

0
ξsdMs :=

∫ t

0
ξsdM

Tn
s on {t ≤ Tn}, n = 1, 2, . . . ,

yields a linear, isometric mapping

L2(M) ∋ ξ 7→
∫ .

0
ξsdMs . ∈ M 2

c

For integrands in L(M) := {ξ predictable with
∫ T
0 ξ2s d [M]s <∞},

the above recipe still yields IM(ξ) =
∫ .
0 ξsdMs ∈ Mc,loc.

Definition
The process IM(ξ) =

∫ .
0 ξsdMs is called the stochastic integral of

ξ ∈ L(M) w.r.t. M ∈ Mc,loc.
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Proof
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Quadratic variation of a stochastic integral

Theorem
For M ∈ Mc,loc and ξ ∈ L(M), the quadratic variation of∫ .
0 ξsdMs ∈ Mc,loc is given by

[

∫ .

0
ξsdMs ]t =

∫ t

0
ξ2s d [M]s , t ∈ [0,T ].
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Proof
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Continuous semimartingales

Let us now patch together our integrals w.r.t. bounded variation
processes A and w.r.t. local martingales M. This will be
particularly fruitful for the following class:

Definition
A process S is called a continuous semimartingale if it can be
written in the form S = M + A for a continuous local martingale
M and a continuous adapted process A of bounded variation.

Remark
For a semimartingale with continuous paths, it can be shown that
it is also a continuous semimartingale in the above sense.

Lemma
The continuous processes M and A in the decomposition of a
continuous semimartingale are unique after normalizing to A0 = 0.

Definition
The decomposition is called the Doob-Meyer decomposition of S .
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Proof
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Brownian motion—a lame example

Definition
An adapted stochastic process W on (Ω, (Ft),P) is called a
Brownian motion or Wiener process if it has continuous sample
paths t 7→ Wt(ω) for P-a.e. ω ∈ Ω, starts at zero P[W0 = 0] = 1
and has independent Gaussian increments in the sense that
P[Wt −Ws ∈ dx |Fs ] = N(0, t − s)(dx) for any 0 ≤ s ≤ t.

Of course, Brownian motion is in particular a continuous martingale
(actually in a sense discussed later sort of the only one) and, thus,
also a continuous semimartingale with decomposition S = W + 0.

In fact, any Ito-process is a continuous semimartingale as
well—this should be clear from FiMa I.
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Brownian motion—a lame example?

Let us consider a Brownian motion W on (Ω, (Ft),P) and assume
an “insider” has right from the start access to additional
information, namely to its value at time T > 0. So the relevant
filtration for this insider is

Gt := Ft ∨ σ(WT ), t ≥ 0.

Exercise
Clearly, W is not a Brownian motion on (Ω, (Gt),P), but it
remains a continuous semimartingale with decomposition

Wt = W ′
t +

∫ t∧T

0

WT −Ws

T − s
ds

where W ′ is a (Ω, (Gt),P)-Brownian motion.

Remark
On (Ω, (Gt),P), W is called a Brownian bridge over [0,T ].
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Brownian motion—a lame example??

Let us consider a Brownian motion W on (Ω, (Ft),P) and assume
an “insider” has right from the start access to additional
information, namely to its path up to time T > 0. So the relevant
filtration for this insider is

Gt := Ft ∨ σ(Ws , s ≤ T ), t ≥ 0.

Exercise
Clearly, W is not a Brownian motion on (Ω, (Gt),P), and it is not
even a continuous semimartingale.

Remark
Hence, the notion of a semimartingale is quite fickle when it
comes to tampering with the filtration.
Fortunately, when it comes to tampering with the probability
measure, the notion of a semimartingale is rather stable at least if
we confine ourselves to equivalent changes of measure; see our
discussion below on Grisanov’s theorem.



I.1.4-15

Stochastic integration w.r.t. continuous semimartingales

For a continuous semimartingale with Doob-Meyer decomposition
S = M + A, we can now define

∫ .
0 ξsdSs for integrands from

L(S) :=

{
ξ predictable with

∫ T

0
|ξs |2d [M]s +

∫ T

0
|ξs ||dAs | <∞

}
as the continuous semimartingale with Doob-Meyer decomposition∫ t

0
ξsdSs :=

∫ t

0
ξsdMs +

∫ t

0
ξsdAs , t ∈ [0,T ].

Remark
If A is continuous with bounded total variation TVT (A) <∞, its
Hahn-decomposition A = A↑ − A↓ yields minimal continuous,
increasing A↑, A↓ with A↑

T + A↓
T = TVT (A). We use these to

define ∫ t

0
|ξs ||dAs | :=

∫ t

0
|ξs |(dA↑

s + dA↓
s ), t ∈ [0,T ].
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Limit theorem for stochastic integrals

Continuous dependence of integrals on integrands can also be
ensured for integration with respect to semimartingales:

Theorem
For a continuous semimartingale S = M + A and ξ, ξn ∈ L(S),
n = 1, 2, . . . , with∫ T

0
|ξs − ξns |2d [M]s +

∫ T

0
|ξs − ξns ||dAs |

P→ 0,

we have
∫ .
0 ξ

n
s dSs →

∫ .
0 ξsdSs uniformly in probability:

sup
t∈[0,T ]

∣∣∣∣∫ t

0
ξns dSs −

∫ t

0
ξsdSs

∣∣∣∣ P→ 0.

Upshot: Suitable criteria for classical Lebesgue-style limit
theorems can be used for limits of stochastic integrals.
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Proof
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Finally: Proof of our theorem on quadratic variation

Corollary

Consider a refining sequence of stopping time partitions

τN = {0 = TN
0 ≤ · · · ≤ TN

nN
= T} with ∥τN∥ := sup

i=1,...,nN

|TN
i − TN

i−1|
P→ 0.

Then, for any M ∈ Mc,loc, we have

sup
t∈[0,T ]

∣∣∣∣∣
nN∑
i=1

(MTN
i ∧t −MTN

i−1∧t
)2 − [M]t

∣∣∣∣∣ P→ 0.

In particular, the special partition sequence τ̄N considered in our
construction of quadratic variation [M] for M ∈ Mc does not
matter after all.
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Proof
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Integration w.r.t. stochastic integrals

Sometimes we will want to integrate processes ξ′ w.r.t. a
semimartingale S ′ which is itself a stochastic integral, i.e.,
S ′ =

∫ .
0 ξsdSs for some continuous semimartingale S and ξ ∈ L(S):

Lemma
In the above situation, we have ξ′ ∈ L(S ′) iff ξ′ξ ∈ L(S) and in
this case ∫ t

0
ξ′sdS

′
s =

∫ t

0
ξ′sξsdSs , t ∈ [0,T ].

Remark
This lemma gives formal meaning to and justification of
statements like dS ′

s = ξsdSs which we will make from time to time.
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Proof
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Finally, finally back to Finance

Corollary

For any continuous semimartingale X describing an asset’s
discounted price flucutations, we can define the discounted profits
and losses from trading according to ξ ∈ L(X ) by putting

Gt(ξ) :=

∫ t

0
ξsdXs , t ∈ [0,T ].

Supplementing ξ in a self-financing manner with ξ0 to a strategy
ξ̄ = (ξ0, ξ) with initial value v = ξ̄0X̄0 leads to the wealth process

V ξ̄
t := ξ0t + ξtXt := V v ,ξ

t := v +

∫ t

0
ξsdXs , t ∈ [0,T ].

This yields the desired consistent and stable definition of the
wealth dynamics beyond simple startegies.

MISSION MORE THAN ACCOMPLISHED!
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Financial modeling means constructing semimartingales

A consequence from the last chapter is that we will want to model
discounted asset prices as (continuous) semimartingales:

X = M + A

where
▶ A is a continuous adapted process of bounded variation

specifying the local price trend:

dAt = “average price change over the next dt-period”

▶ M is a continuous local martingale specifying (sort of)
symmetric price fluctuations around this trend:

dMt = “conditionally centered random noise over next dt-period”

Obvious example: Ito-processes

Xt = X0 +

∫ t

0
ΥsdWs +

∫ t

0
ηsds, t ∈ [0,T ].
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New from old: smooth transformations of semimartingales

For Ito-processes we found that they are stable with respect to
smooth transformations because of Ito’s formula.

? Does Ito’s formula also work for continuous semimartingales?

! Yes, and we can use it to work out the continuous local
martingale part and the continuous bounded variation part for
any process emerging as a smooth transformation of a
continuous semimartingale.

Remark
So rather than having to compute market trends of transformed
quantities by taking expectations, we will be able to determine
them by calculus—which is a lot simpler!
Similarly, we will be able to understand how symmetric fluctuations
are transformed, again by simple calculus.
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Ito’s formula

Theorem
For a continuous semimartingale S = M + A and f ∈ C 2(R), also
f (S) is a continuous semimartingale and we have

f (St)− f (S0) =

∫ t

0
f ′(Ss)dSs +

1

2

∫ t

0
f ′′(Ss)d [S ]s

=

∫ t

0
f ′(Ss)dMs︸ ︷︷ ︸

local martingale part

+

∫ t

0
f ′(Ss)dAs +

1

2

∫ t

0
f ′′(Ss)d [M]s︸ ︷︷ ︸

bounded variation part

.

Remark
This is often written in differential form:

df (St) = f ′(St)dSt +
1

2
f ′′(St)d [S ]t
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Illustration

Remember how we constructed the quadratic variation for a
continuous martingale M with M0 = 0 essentially by constructing
an iterated integral and finding that∫ t

0
MsdMs =

1

2
(M2

t − [M]t), t ∈ [0,T ].

We can now view this also as a first instance of Ito’s formula for
the special case where f (x) := 1

2x
2:

1

2
M2

t =

∫ t

0
MsdMs +

1

2

∫ t

0
1d [M]s , t ∈ [0,T ].
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Quadratic variation of a continuous semimartingale

Lemma
For a continuous semimartingale S = M + A, we have

sup
t∈[0,T ]

∣∣∣∣∣
nN∑
i=1

(STN
i ∧t − STN

i−1∧t
)2 − [M]t

∣∣∣∣∣ P→ 0.

for any sequence of stopping time partitions

τN = {0 = TN
0 ≤ · · · ≤ TN

nN
= T} with ∥τN∥ := sup

i=1,...,nN

|TN
i − TN

i−1|
P→ 0.

Definition
The process [S ] := [M] is called the quadratic variation of the
continuous semimartingale S = M + A.

Remark
Obviously, S2 − [S ] = S2 − [M] will typically not be a continuous
local martingale, unless already S is one.
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Proof
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Proof of Ito’s formula via Tayloring telescoping sums
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Going to higher dimensions

In order to extend the preceding proof to functions f = f (S1, S2)
of two (or more) continuous semimartingales, we need to do a
multivariate Taylor approximation and then understand the limits
of sums as in the following lemma.

Lemma
Consider a sequence of stopping time partitions

τN = {0 = TN
0 ≤ · · · ≤ TN

nN
= T} with ∥τN∥ := sup

i=1,...,nN

|TN
i − TN

i−1|
P→ 0.

For two continuous semimartingales S1, S2, the sums

nN∑
i=1

(S1
TN
i ∧t − S1

TN
i−1∧t

)(S2
TN
i ∧t − S2

TN
i−1∧t

)

converge uniformly in t ∈ [0,T ] in probability to a continuous
adapted process of bounded variation denoted [S1,S2].
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Covariation of continuous semimartingales

Definition
The process [S1, S2] of the preceding lemma is called the quadratic
covariation of S1 and S2.

Lemma
With obvious notation we have [S1,S2] = [M1,M2], and [M1,M2]
is the only continuous adapted process of bounded variation A for
which M1M2 − A is a continuous local martingale.

Corollary

For two independent Brownian motions W 1, W 2, we have

[W 1,W 2]t = 0, t ∈ [0,T ].

Proof: W 1W 2 is already a continuous martingale (?!) for
independent Brownian motions W 1, W 2.
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Covariation of stochastic integrals

Just like the quadratic variation of a stochastic integral can be
computed from its integrand and integrator, also the covariation
between such integrals can be obtained from its inputs:

Lemma
For ξ ∈ L(S) and ξ′ ∈ L(S ′), we have ξξ′ ∈ L([S , S ′]) because of
the Kunita-Watanabe inequality∫ T

0
|ξs ||ξ′s ||d [S , S ′]s | ≤

(∫ T

0
ξ2s d [S ]s

)1/2(∫ T

0
ξ′2s d [S

′]s

)1/2

.

Moreover, we can compute the covariation

[

∫ .

0
ξdS ,

∫ .

0
ξ′dS ′]t =

∫ t

0
ξsξ

′
sd [S , S

′]s , t ∈ [0,T ].
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Proof



I.2.1-9

Proof of the preceding lemma

By polarization, the statements on covariations can be reduced to
properties of quadratic variation.
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Multivariate Ito formula

Theorem
Let S = (S1, . . . ,Sd) be a vector of d continuous semimartingales
(i.e., a d-dimensional semimartingale). Then, for any f ∈ C 2(Rd)
also f (S) is a continuous semimartingale and we have

f (St)− f (S0) =

∫ t

0
∇f (Ss) · dSs +

1

2

∫ t

0
∇2f (Ss) · d [S ]s

=
d∑

i=1

∫ t

0
∂i f (Ss)dS

i
s

+
1

2

d∑
i ,j=1

∫ t

0
∂2ij f (Ss)d [S

i ,S j ]s

for t ∈ [0,T ].
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Continuous semimartingales form an algebra

Theorem
The sums and products of continuous semimartingales yield again
continuous semimartingales.
Specifically, we have Ito’s product rule

S1
t S

2
t = S1

0S
2
0 +

∫ t

0
S1
s dS

2
s +

∫ t

0
S2
s dS

1
s + [S1, S2]t , t ∈ [0,T ],

for any pair of continuous semimartingales S1, S2.

Remark
Ito’s product rule could also have been established right from the
construction of quadratic covariation, i.e., without using Ito’s
formula, just using stochastic integration . . .
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Proof
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Another proof of Ito’s formula via polynomial
approximation

Exactly as for Ito processes.
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I.2.2-0

Linear Stochastic Differential Equations

Recall how for the Black-Scholes model

Xt = s0 exp

(
σWt +

(
µ− r − 1

2
σ2

)
t

)
, t ∈ [0,T ],

it was helpful to write its dynamics as solution to the linear SDE

X0 = s0, dXt = Xt(σdWt + (µ− r)dt).

? Which continuous semimartingales can we view as such a
solution to a linear SDE?
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Stochastic logarithm and exponential

Theorem
For any continuous semimartingale L, there exists a unique (up to
indistinguishability) solution X to

X0 = x0, dXt = XtdLt ,

namely Xt = x0E (L)t , where

E (L)t =

exp

(
Lt − L0 −

1

2
[L]t

)

denotes the so-called stochastic exponential of L.
Conversely, any strictly positive continuous semimartingale X can
be written as X = x0E (L) if we choose L as the so-called
stochastic logarithm of X :

Lt =

∫ t

0

dXs

Xs
.
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Proof
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Black-Scholes as an exponential

So, we can write the Black-Scholes model

Xt = s0 exp(σWt + (µ− r − 1

2
σ2)t), t ∈ [0,T ]

as the stochastic exponential of Brownian motion with volatility σ
and drift µ− r :

Xt = s0E (L)t for Lt = σWt + (µ− r)t, t ∈ [0,T ].
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Jouer à la martingale . . .

In a model like, say, Black-Scholes consider the following strategy
defined inductively over [0,T ]:

n = 1: Buy and hold one unique of stock ξ1 = 1 until you
have gained 1$, but at most until time 1

2T is left.

n ; n + 1: Once you have reached the 1$ gain, you walk away
with your win; if by time Tn := (1− 2−n)T , this
hasn’t happened, you choose your next position
ξn+1 > 0 in such a way that

P

[
sup

t∈[Tn,Tn+1]
{VTn + ξn+1(Xt − XTn)} ≥ 1︸ ︷︷ ︸

“walk away with 1$ between Tn and Tn+1”

∣∣∣∣∣FTn

]
≥ 1/2

and try your luck over [Tn,Tn+1].
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Jouer à la martingale . . . (ctd.)

Choosing ξn+1 ∈ FTn as required is possible because the above
probability coincides with

P

[
1− VTn

supt∈[Tn,Tn+1]{Xt − XTn}
≤ x

∣∣∣∣∣FTn

]
for x = ξn+1 ∈ FTn

which will converge to 1 as x ↑ ∞ (unless X stops fluctuating over
[Tn,Tn+1] which obviously is not the case for the Black-Scholes
model and actually for any other reasonable model (?!?)).

Lemma
The above recipe yields a selffinancing strategy which, starting
from zero initial capital, ends up with terminal discounted wealth

VT = 1 P-a.s.,

and actually accomplishes this feat by an almost surely finite
number of transactions.
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Proof
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Arbitrage!?

So the strategy described above will produce a riskless profit in the
Black-Scholes model and, in fact, in any typical continuous-time
model!

? What to do? Should we better stop looking at
continuous-time models??

! No! We should just rule out strategies which proceed as
described above—and we have good reason to do so, because,
while ending up at 1$ a.s. in the end, the PnL inbetween
cannot be bounded from below a priori. So a strategy like
above is as infeasible as is a doubling strategy at a roulette
table: we just won’t have the financial backing to guarantee
our solvency while following it.

Remark
The reckless “winning” stragegy is known in French as “jouer à la
martingale”, one of the origins for the notion “martingale”.
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Doubling strategies tried — and failed . . .

There are quite a few examples of “doubling strategies” gone bad:

▶ Nick Leeson bringing down Barings Bank in 1995;
https://en.wikipedia.org/wiki/Nick_Leeson

▶ Jérôme Kerviel causing a loss of 4.9bn for Société Générale in
2008;
https://en.wikipedia.org/wiki/Jerome_Kerviel

▶ Bruno Iksil losing 6.2bn for JP Morgan in 2012;
https://en.wikipedia.org/wiki/2012_JPMorgan_

Chase_trading_loss

A common feature seems to be that early “successful” runs of the
strategy where followed by the one run too many — all of this
enabled by circumventing ineffective risk-management systems.

https://en.wikipedia.org/wiki/Nick_Leeson
https://en.wikipedia.org/wiki/Jerome_Kerviel
https://en.wikipedia.org/wiki/2012_JPMorgan_Chase_trading_loss
https://en.wikipedia.org/wiki/2012_JPMorgan_Chase_trading_loss
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Admissible strategies

Definition
A selffinancing strategy ξ̄ = (ξ0, ξ) is called admissible if its
discounted PnL is bounded from below over [0,T ], i.e., if there is a
constant c ∈ (−∞, 0] such that

Gt(ξ) =

∫ t

0
ξsdXs ≥ c for all t ∈ [0,T ] P-a.s.

Remark
The notion of admissibility is not needed in discrete-time models
over a finite time horizon because there a doubling strategy has
only finitely many chances to win (and thus will lose with positive
probability); for infinite horizon models this changes also in
discrete-time (see exercise last term).
The admissibility constraint is sometimes difficult to deal with
technically—but obviously can’t be avoided (just altered at times).
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A financially relevant strict local martingale

Obviously, the PnL from the “doubling strategy” constructed
above can be written as a stochastic integral

Vt = 0 +

∫ t

0
ξsdXs , t ∈ [0,T ].

In particular, when X is a local martingale, also V will be. But
because

V0 = 0 and VT = 1 a.s.

this local martingale cannot be a true martingale; it thus
constitutes a financially most relevant example of what is known as
a strict local martingale.

Remark
Checking whether a local martingale is actually a true martingale
can be tedious and technical at times—exactly the kind of stuff
mathematicians can get carried away by. . .
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No arbitrage opportunities among admissible strategies

Lemma
Let (Xt)t∈[0,T ] be a continuous semimartingale on (Ω, (Ft),P) and
suppose that X is a local martingale under some P∗ ≈ P on FT .
Then there is no arbitrage among admissible strategies:∫ T

0
ξsdXs ≥ 0 a.s. and ξ admissible ⇒

∫ T

0
ξsdXs = 0 a.s.
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Proof
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Fundamental theorem of asset pricing

Theorem (Delbaen & Schachermayer (1994))

A locally bounded semimartingale X on (Ω, (Ft),P) turns into a
local martingale under some P∗ ≈ P if and only if X satisfies the
condition No Free Lunch with Vanishing Risk (NFLVR)

L∞-closure{g ∈ L∞ : g ≤
∫ T

0
ξsdXs for some admissible ξ ∈ L(X )}

∩ L∞+ = {0}.

Remark
f ∈ L∞+ is a free lunch with vanishing risk if f ̸≡ 0 and if for
n = 1, 2, . . . , the initial capital 1/n is sufficient to superreplicate it:

0 ≤ f ≤ 1
n +

∫ T
0 ξns dXs ; in other words, the downside risk of the

strategies ξn is uniformly small, while the upside P[f > 0] > 0 is
maintained.
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Fundamental theorem of asset pricing

Remark
▶ This is the best possible result: counter examples.

▶ Local boundedness can be dispensed with when one relaxes to
so-called σ-martingale measures; see Delbaen-Schachermayer
1998.

▶ The importance of the result lies in deducing rich
mathematical structure (local martingale) from general,
readily interpretable and acceptable (!) economic conditions.

▶ The very functional analytic proof would take more than a
term to discuss; it seeks to use (NFLVR) in lieu of the
martingale property to study upcrossings etc.

▶ What is important for us is knowing that we should always be
able to find a martingale measure if we are looking at a
meaningful financial model. Fortunately, in concrete situations
these measures are often easy to find.
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How to find a martingale measure . . .

? How to find, for a given continuous semimartingale
X = M + A, a local martingale measure P∗ ≈ P (if there is
one)?

Recall: For P∗ ≈ P with density process Zt :=
dP∗

dP
∣∣
Ft
, t ∈ [0,T ],

we have that

X is a (local) P∗-martingale

⇐⇒ XZ is a (local) P-martingale

Assuming Z continuous too, we thus want

d local P-martingale
!
= d(XZ ) =

XdZ + ZdX + d [X ,Z ]

= XdZ + ZdM︸ ︷︷ ︸
=d local P-martingale

+ ZdA+ d [X ,Z ]︸ ︷︷ ︸
dbounded variation

!
=0

i.e., with Z =: E (L):

dA
!
= − 1

Z
d [X ,Z ] = −d [X , L]
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Girsanov’s theorem

Theorem (Girsanov)

Let P∗ ≈ P have continuous density process Z = E (L) = dP∗

dP
∣∣
F.
.

Then

(i) M∗ is a continuous local martingale under P∗ if and only if
M := M∗ + [M∗, L] is a continuous local martingale under P.

(ii) M is a continuous local martingale under P if and only if
M∗ := M − [M, L] is a continuous local martingale under P∗.



I.3.2-6

Proof
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Implications for semimartingales and their integrals

Corollary

(i) The space of (continuous) semimartingales is the same for
equivalent measures.

(ii) The space L(X ) of integrands for a continuous semimartingale
X is the same for equivalent measures and the stochastic
integrals are the same as well.

; PnLs will not change when we consider them under different,
but equivalent measures.
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Proof
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Back to our quest for an equivalent local martingale
measure

Necessary for continuous density process Z for X = M + A:
There is a continuous local martingale L(=

∫ .
0 dZ/Z ) with

dA
!
= −d [X , L].

Sufficient: L as above yields via Z := E (L) not only a continuous
local martingale (which it always will!?!), but actually a true
martingale. Indeed, we can then define a probability measure
P∗ ≈ P consistently by putting

P∗[A] := E[Zt1A] for A ∈ Ft , t ∈ [0,T ],

and this measure will indeed be an equivalent local martingale
measure for X .

? How to tell when the exponential Z := E (L) of a local
martingale L yields a true martingale?
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Nonnegative local martingales

Lemma
Any local martingale M which is uniformly bounded from below is
a super-martingale. It is a uniformly integrable true martingale iff
E[M∞] = M0.

Example

For a three-dimensional Brownian motion W = (W 1,W 2,W 3)
starting at x ̸= 0, the inverse distance from the origin (1/|Wt |) is a
nonnegative strict local martingale.

Remark
The above example illustrates the need for criteria when a
nonnegative local martingale is a true martingale.

Corollary

A bounded local martingale is a true uniformly integrable
martingale.
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Proof



I.3.2-12

The Kazamaki condition and the Novikov condition

Theorem
For a continuous local martingale L starting in L0 = 0, each of the
following statements implies the next:

(i) Novikov condition:

E
[
exp

(
1

2
[L]∞

)]
<∞

=⇒ (ii) Kazamaki condition: L is a uniformly integrable martingale
with

E
[
exp

(
1

2
L∞

)]
<∞.

=⇒ (iii) E (L) is a uniformly integrable martingale.
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Proof



I.3.3-14

Outline

Gains, losses and stochastic integration

Ito’s formula: trend and volatility

No arbitrage and martingale measures
Doubling strategies and local martingales
No arbitrage and the FTAP
Illustration in the generalized Black-Scholes model

Pricing and Hedging



I.3.3-0

Black-Scholes model with stochastic coefficients

Let us generalize the Black-Scholes model and allow stochastic
interest rates

r = (rt) predictable with

∫ T

0
|rt |dt <∞ a.s.

and an arbitrary Ito-process (rather than a Brownian motion with
drift) to drive the asset’s returns:

dXt

Xt
= σtdWt + (µt − rt)dt

for some σ ∈ L(W ) and some predictable µ ∈ L1(dt) a.s.
From our theory of stochastic exponentials we know:

Xt = s0E

(∫ .

0
σsdWs +

∫ .

0
(µs − rs)ds

)
t

= s0 exp

(∫ t

0
σsdWs +

∫ t

0
(µs − rs −

1

2
σ2s )ds

)
, t ∈ [0,T ].
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Finding an equivalent martingale measure

From our general considerations, we know that we ought to find a
continuous local martingale L with

d [X , L]t + dAt = 0 where At =

∫ t

0
Xs(µs − rs)ds

⇐⇒

Xtσtd [W , L]t= −Xt(µt − rt)dt

⇐⇒

d [W , L]t= −µt − rt
σt

dt

? What local martingale L will have this covariation with W ?

Lt := −
∫ t

0

µs − rs
σs︸ ︷︷ ︸
=:ϑs

dWs will, provided ϑ ∈ L(W )
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From candidate to official martingale measure

So:

Zt := E (L)t := exp

(
−
∫ t

0
ϑsdWs −

1

2

∫ t

0
ϑ2sds

)
, t ∈ [0,T ],

is our candidate for the density process Zt =
dP∗

dP
∣∣
Ft
—but we still

need to show that this local martingale is a true martingale to get
a probability measure P∗ ≈ P this way. Fortunately, we have our
criteria worked out for that . . .
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Martingale measure for the stochastic Black-Scholes model

Corollary

The process Z = E (−
∫ .
0 ϑdW ) yields the density process of an

equivalent local martingale measure for the Black-Scholes model
with stochastic coefficients if the market price of risk

ϑ :=
µ− r

σ
∈ L(W )

satisfies, e.g., the Novikov-condition

E
[
exp

(
1

2

∫ T

0
|ϑs |2ds

)]
<∞.

Remark
Notice how the Novikov-condition illustrates that the risk (as
represented by σ) has to be in line with returns (as represented by
µ− r) to rule out arbitrage or even a free lunch with vanishing risk.
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Illustrating Girsanov’s theorem for Brownian motion

Theorem
Let W be a Brownian motion on (Ω, (Ft),P) and assume P∗ ≈ P
has a density process of the form

Zt :=
dP∗

dP

∣∣∣∣
Ft

= exp

(
−
∫ t

0
ϑsdWs −

1

2

∫ t

0
ϑ2sds

)
.

Then

W ∗
t := Wt +

∫ t

0
ϑsds

is a Brownian motion on (Ω, (Ft),P∗), respectively

Wt = W ∗
t −

∫ t

0
ϑsds

is a Brownian motion with drift −ϑ on (Ω, (Ft),P∗).
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Proof
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Consequences for Black-Scholes

Corollary

For the stochastic Black-Scholes model with drift µ, interest rate r
and volatility σ, we can write the asset price dynamics as

dSt
St

= σtdWt + µtdt = σtdW
∗
t + rtdt

and so, under P∗, the stock price will have the interest rate as its
drift.
Equivalently, the discounted stock price evolves according to

dXt

Xt
= σtdWt + (µt − rt)dt = σtdW

∗
t ,

making obvious its local martingale dynamics under P∗.
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Lévy’s characterization of Brownian motion

Theorem
If M with M0 = 0 is a continuous local martingale on (Ω, (Ft),P)
with [M]t = t, then it is a Brownian motion on this space.

Remark
This theorem is extremely helpful because establishing that a
process is a local martingale is often easy (by virtue of Ito’s
formula for instance)—and computing quadratic variations is even
easier (typically at least, by virtue of our stochastic integration
theory and, yet again, Ito’s formula).
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Proof



I.3.3-9

Stock price models as time-changed Brownian motions

Theorem (Dambis-Dubins-Schwarz)

Let M be a continuous local martingale with limt↑∞[M]t = ∞.
Then there is a standard Brownian motion (in its own filtration) B
such that

Mt −M0 = B[M]t , t ≥ 0.

Remark
Since we know that the asset prices in every continuous financial
model with (NFLVR) can be turned into local martingales, the
above theorem implies that all reasonable asset price models
emerge as time-changed Brownian motions. In that sense, we find
that Brownian motion is the financial model per se and in some
sense the “only” continuous local martingale.
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Sketch of proof
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Arbitrage-free valuations of European claims

Consider a financial model with continuous discounted risky asset
price process X admitting P∗ as an equivalent local martingale
measure.

? What is an aribtrage-free valuation for a contingent claim
with discounted payoff H ≥ 0 at time T?

! As in discrete-time models, any number π for which we can
find an “interpolating” price process XH which starts in
XH
0 = π and ends in XH

T = H and which keeps the model
extended by XH arbitrage-free.

If H is P∗-integrable such an interpolation is readily found for
π := E∗[H], namely

XH
t := E∗ [H|Ft ] , t ∈ [0,T ].

Indeed: Then P∗ will be a martingale measure for both X and XH

and, thus, ensure absence of arbitrage in the extended model by
the FTAP.
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Illustration in the Black-Scholes model: power options

In the Black-Scholes model with constant coefficients, consider

H = e−rTSp
T — a “power option”.

Under P∗ ≈ P with density process E (−µ−r
σ W ), this H is

integrable and so an arbitrage free price process is

XH
t = E∗ [H|Ft ] = e−rTE∗

[
sp0 exp

(
pσW ∗

T + p(r − 1

2
σ2)T

)∣∣∣∣Ft

]
= e−rT sp0 exp

(
pσW ∗

t +
1

2
p2σ2(T − t) + p(r − 1

2
σ2)T

)
= X p

t exp

(
1

2
(p − p2)σ2t + (

1

2
(p2 − p)σ2 + (p − 1)r)T

)
= X p

t exp

(
1

2
(p2 − p)σ2(T − t) + (p − 1)rT

)
= X p

t exp

(
(p − 1)

(
1

2
pσ2(T − t) + rT

))



I.4.1-2

Alternative arbitrage free prices?

The construction of our equivalent martingale measure P∗ did not
rule out the possibility of other martingale measures.

? Would other martingale measures lead to different prices?

! Not if the power option is replicable!

So let us check:

ξHt dXt
?
= dXH

t

= d

(
X p
t exp

(
(p − 1)

(
1

2
pσ2(T − t) + rT

)))
= pX p−1

t exp(. . . )︸ ︷︷ ︸
=:ξHt

dXt + 0︸︷︷︸
because XH is a P∗-martingale!

dt

Hence, ξH is replicating the power option—and it is admissible
because its gains process is G (ξH) = XH − XH

0 ≥ −XH
0 .

Note: Obviously hedging strategies have to be admissible, too!
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Trouble on the horizon: More expensive replication!

Caveat
The negative of our “doubling strategy” from above is an
admissible strategy starting in 0 and ending a.s. in -1 (“suicide
strategy”). If we add it to the above replicating strategy, it will
replicate the option starting with initial wealth E∗[H] + 1—and in
fact also this is an arbitrage-free price for the power option!

? How can there be two arbitrage-free prices and replication?

! To take advantage of the higher arbitrage-free price we would
want to replicate the option using the lower price as initial
capital and run the negative of the “other” replication
strategy—but the net strategy then is the “doubling strategy”
which is inadmissible!!

; replication alone (even by admissible strategies) does no longer
suffice to pin down good arbitrage-free prices
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Good news: pricing by expectation cheapest

Fortunately, our recipe of pricing and, if possible, replication is
guaranteed to be the most competitive approach:

Lemma
If H ≥ 0 is FT -measurable and integrable with respect to an
equivalent local martingale measure P∗ for X such that

XH
t := E∗[H|Ft ] = πH +

∫ t

0
ξHs dXs , t ∈ [0,T ],

for some πH ∈ R, ξH ∈ L(X ), then πH is minimal among all π ∈ R
for which there is an admissible ξ ∈ L(X ) such that

π +

∫ T

0
ξsdXs ≥ H a.s.

Moreover, XH and, in particular, πH = XH
0 do not depend on the

choice of martingale measure P∗ if such a replicating ξH exists.
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Proof
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Did we get lucky with our replication of the power option?

On the one hand: No - we already know since FiMa I that vanilla
options in the Black-Scholes model can be replicated (and now we
know that our recipe will lead to admissible strategies in a natural
way).

On the other hand: Yes - for, what if the option price dynamics
dXH

t cannot be expressed in terms of the underlying’s dXt alone?
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Unspanned risk

Example

Let S be as in the Black-Scholes model and for an independent
(for simplicity) Brownian motion B take E = E (σEB) as the
model for an exchange rate (say). Consider a power option on a
foreign stock denominated in domestic currency:

H ′ := e−rTSp
TET

Then, using P∗ from above, we find

XH′
t = E∗

[
e−rTSp

TET

∣∣∣Ft

]
?!
= XH

t Et

dXH′
t = EtdX

H
t + XH

t dEt = Etξ
H
t XtσdW

∗
t + XH

t EtdBt

So hedging with the stock X will not suffice for replication, we also
need to hedge the exchange rate risk—and would require an extra
asset for that.
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Hedging when you cannot replicate

Consider a financial model with
▶ X = (Xt): continuous discounted asset price for a stock
▶ P∗: an equivalent measure such that X ∈ M 2

c (P∗)
▶ H ∈ L2(P∗): a discounted contingent claim that we need to

cover at time T

? If we cannot replicate H by trading in X , how should we
hedge against this liability?

! Conservative answer: Superreplicate it!

? But what if this is too costly—after all we cannot, in good
faith, charge our clients the super-replication price?!?

! Many alternative answers, one of them:
Quadratic hedging à la Föllmer-Sondermann:

Minimize E∗

[(
H − (v0 +

∫ T

0
ξsdXs)

)2
]

over pred. ξ ∈ L2(P∗ ⊗ d [X ]) and, possibly, also over v0 ∈ R.
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Decomposition square-integrable martingales

Theorem (Kunita-Watanabe decomposition)

For (Xt) ∈ M 2(P), every square-integrable P-martingale
(Ht) ∈ M 2(P) has a unique decomposition

Ht = H0 +

∫ t

0
ξHs dXs + Nt , t ∈ [0,T ],

where

▶ ξH is predictable with E∗
[∫ T

0 (ξHs )
2d [X ]s

]
<∞, i.e.,

ξH ∈ L2(X ),

▶ N is a square-integrable P-martingale which is strongly
orthogonal to X in the sense that E[XSNS ] = 0 for any
stopping time S ≤ T (i.e., such that XN is a martingale),

▶ H0 = E∗[HT ].
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Proof
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Quadratic hedging solved

Corollary

Put Ht := XH
t := E∗[H|Ft ], t ∈ [0,T ], and consider its

Kunita-Watanabe-decomposition

Ht = H0 +

∫ t

0
ξHs dXs + Nt , t ∈ [0,T ].

Then ξH (and, if we also want to maximize over the initial captial,
vH0 := H0 = XH

0 ) minimize

E∗

[(
H − (v0 +

∫ T

0
ξsdXs)

)2
]

over predictable ξ ∈ L2(P∗ ⊗ d [X ]) (and, possibly, also over
v0 ∈ R).
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Proof



I.4.2-5

Discussion

▶ vH0 = H0 = XH
0 = E∗[H] obviously depends on our choice of

martingale measure P∗ for X , as does the strategy ξH .

▶ Taking v0 as a price for H is an arbitrage-free valuation, but it
leaves all risk related to the “unhedgeable” strongly
orthogonal component N unpriced.

▶ The L2(P∗)-distance is obviously mathematically convenient,
but economically not beyond reproach. For instance, it
penalizes losses the same it penalizes gains.

? So wouldn’t it be good to have a model where everything is
replicable after all?
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Ito’s representation theorem

Theorem
For a Brownian motion W on (Ω, (Ft),P), we have:

(i) Every local martingale M which is adapted to the filtration
(FW

t ) generated by W is of the form

M = M0 +

∫ .

0
ξsdWs for some ξ ∈ L(W ).

In particular, every “Brownian” local martingale is continuous.

(ii) For any T ≥ 0, every FW
T -measurable square-integrable

functional H of the Brownian motion W is of the form

H = E[H] +

∫ T

0
ξsdWs for some ξ ∈ L2(Ω× [0,T ],P,P⊗ dt).

(iii) The integrand ξ in the Ito-representations of (i) and (ii) is
unique in its respective class.
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Counterexample for uniqueness in (ii) within L(W ) instead
of L2(W )

Take ξ as in (ii) and let ξd ∈ L(W ) be a doubling strategy over

[0,T/2] such that
∫ T/2
0 ξddW = 1, ξd = 0 on [T ,T/2], and let

ξs ∈ L(W ) be a suicide strategy over [T/2,T ] such that ξs = 0 on

[0,T/2] and
∫ T
T/2 ξ

sdW = −1.

Then ξ̃ := ξ + ξd + ξs ∈ L(W ) also represents

E[H] +

∫ T

0
ξ̃dW = E[H] +

∫ T

0
ξdW + 1− 1 = H

but obviously differs from ξ. Since obviously (?!)
ξ̃ ̸∈ L2(W ) = L2(Ω× [0,T ],P,P⊗ dt), this is a counterexample
to uniqueness in (ii) within L(W ), but is contradiction to the
uniqueness in L2(W ) stated in item (ii) of Ito’s representation
theorem.
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Proof
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Completeness of the Black-Scholes model

Corollary

With respect to the filtration Ft := F S
t = FW

t = FX
t , t ∈ [0,T ],

our Black-Scholes model with constant coefficients driven by the
Brownian motion W is complete in the sense that for any bounded
contingent claim H ∈ F S

T there is an initial capital vH ∈ R and a
strategy ξH ∈ L(X ) with bounded wealth process such that

H = vH +

∫ T

0
ξHs dXs .
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Proof



I.4.3-5

Uniqueness of martingale measure in Black-Scholes model

Corollary

In the Black-Scholes-model with constant coefficients and filtration
Ft := F S

t = FW
t , t ≥ 0, the measure P∗ ≈ P on each Ft with

density process

Zt =
dP∗

dP

∣∣∣∣
Ft

:= E (−ϑW )t = exp

(
−ϑWt −

1

2
ϑ2t

)
for ϑ :=

µ− r

σ

is the only equivalent local martingale measure for the discounted
stock price Xt = e−rtSt , t ≥ 0.
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Proof
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Completeness in general

Corollary

For a continuous discounted stock price process X = (Xt)t∈[0,T ] on
(Ω, (Ft)t∈[0,T ],P), the following two statements are equivalent:

(i) There exists a unique equivalent local martingale measure P∗

for X on FT .

(ii) X satisfies (NFLVR) and the financial model is complete in
the sense that any bounded contingent claim is replicable, i.e.,
for any bounded H ∈ FT there is an initial capital vH ∈ R
and a strategy ξH ∈ L(X ) with bounded wealth process

V vH ,ξH such that

H = V vH ,ξH

T = vH +

∫ T

0
ξHs dXs .
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Proof
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Attainable claims

Corollary

Let X be continuous and satisfy (NFLVR) on (Ω, (Ft)t∈[0,T ],P).
Then the following statements are equivalent for any bounded
claim H ∈ FT :

(i) H is replicable (or attainable), i.e., H = V vH ,ξH

T for some
vH ∈ R and some ξH ∈ L(X ) with bounded wealth process

V vH ,ξH .

(ii) E∗[H] does not depend on the choice of equivalent martingale
P∗ ≈ P for X on FT .



I.4.4-3

Proof



I.4.4-4

Discussion

▶ The above results also holds for multivariate models where
more than one asset is available for trading.

▶ The characterizations of completeness and attainability are
true in models with jumps as well, but much harder to prove
there.
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The hunt is on . . .

The previous results give more than enough reasons to

▶ specify financial models with equivalent martingale measures

▶ determine derivative prices by (the comparably easy task of)
computing expectations

▶ and use the latter to find hedging strategies

▶ see how they perform in “the market” (i.e., in reality)

▶ improve and refine the models where and when they fall short
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Disclaimer

The focus in this part of our course will be on conceptual
aspects of financial models, not necessarily their
mathematically completely rigorous analysis.

So: We will not distinguish between local martingales and true
martingales; processes will be as integrable as required implicitly;
functions will be smooth enough for applying Ito’s formula
whenever we want to. . .

Don’t worry: You will still learn a lot of very useful mathematics!
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A Brownian framework

Standing assumption:

The information flow is the natural filtration (FB
t ) generated by a

d-dimensional Brownian motion B = (B1, . . . ,Bd) on (Ω,F ,P).

▶ market driven by random shocks from B: risk factors

▶ interest rates (rt) almost surely locally dt-integrable,
(FB

t )-predictable

▶ stock price process (St) is (FB
t )-adapted, right-continuous
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Structure theorem in a Brownian framework

Theorem
Every stock price model (St) that exhibits (NFLVR) on
(Ω,F , (FB

t ),P) has dynamics of the form

dSt
St

= (rt + ϑt · σBt )dt + σBt · dBt

= µtdt + σtdWt , t ≥ 0,

for some predictable ϑ, σB ∈ L(W ), and for some 1-dimensional
Brownian motion W , some σ ∈ L(W ) and some predictable
µ ∈ L1loc(dt) almost surely.



II.5.1-2

Proof
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Interpretation of structure theorem

Remark:
▶ ϑit : market price of risk that the pricing measure P∗ attributes

to exposure to the risk shock dB i
t , i = 1, . . . , d

▶ σBt := λt + ϑt : extent to which the asset S is driven by the
shock dBt

▶ µt − rt = ϑt · σBt : risk premium for holding asset S under P∗

▶ The structure theorem also holds mutatis mutandis in the
multivariate case S = (S1, . . . ,Sn).
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The one-dimensional case

Corollary

If d = 1 and σ2t = d [S]t
S2
t
> 0 P⊗ dt-a.e., then the Brownian

financial model is complete. Otherwise, it is incomplete.

Remark
This result generalizes to the multivariate case and, similarly to
discrete time, one finds—morally speaking—that a model will be
complete if and only if the number d of risk factors coincides with
the “true” number of traded assets.
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Proof
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Model misspecification and Black-Scholes

Under an arbitrary local martingale measure P∗ ≈ P, any arbitrage
free Brownian financial model has dynamics of the form

dSt
St

= rtdt + σtdW
∗
t , t ≥ 0,

for a suitable P∗-Brownian motion W ∗.
Financial modeling thus reduces to specification of

▶ interest rates (rt)

▶ volatility (σt)

For now focus on volatility: Assume r = 0; see below for interest
rate models.

? How sensitive is our option pricing and hedging theory with
respect to misspecification of volatility?
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Labtest: In a Black-Scholes trader’s shoes . . .

Consider a trader who

▶ operates in a Brownian market with rt ≡ 0 and unknown
volatility (σt)

▶ postulates for his risk management computations that
volatility is constant: σ̂t ≡ σ̂ ∈ (0,∞)

; trader implements model under P̂∗ with

dŜt

Ŝt
= σ̂dŴ ∗

t

using filtration F̂t = F Ŝ
t , t ≥ 0.

Notice:
Quantities featuring in the trader’s model and computer
implementation are wearing a hat; their counterparts in “reality”
do not.
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Labtest: In a Black-Scholes trader’s shoes . . .

; trader prices derivative H = f (ST ) as Ĥ = f (ŜT ) via

πt(H)(ω) =

Ê∗
[
f (ŜT )

∣∣∣Ŝt = St(ω)
]

; trader computes solution v̂ = v̂(t, s) to Black-Scholes-PDE

∂t v̂ +
1

2
σ̂2s2∂2s v̂ = 0, v̂(T , .) = f

; trader quotes price π0(H) = v̂(0, S0) and runs hedge
∆t = ∂s v̂(t, St), t ∈ [0,T ].

? How effective is this hedge?
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Over- and underhedging with vol errors

Theorem
Assume the payoff profile f is convex. In a scenario ω with

σt(ω) ≤ σ̂ for t ∈ [0,T ],

the trader’s hedge ∆ will super-replicate the contingent claim:

Vt =

v̂(0, s0) +

∫ t

0
∆udSu

≥

v̂(t,St)

VT ≥

f (ST )

Underestimating volatility in a scenario will similarly result in a
“sub-replication”.
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Proof
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Implied volatility

Recall: Black-Scholes call prices are strictly increasing in volatility
parameter from 0 to ∞:

▶ Vega = ∂
∂σBS-call price(T , k, s0, r , σ) > 0

▶ (0,∞) ∋ σ 7→ BS-call price(T , k , s0, r , σ) ∈((
s0 − ke−rT

)+
, s0

)
bijectiv

; Given strike and maturity, call prices can be encoded by the
volatility consistent with these prices: implied volatility.

observed call price
!
= BS-call price(T , k , s0, r , σimp)

; Given today’s stock price s0 and interest r ,
(T , k) 7→ σimp(T , k , s0, r) is called (implied) volatility surface

? Is that really an interesting object to consider?
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Implied volatility surface

Figure: S&P implied volatility surface as of June 20, 2013.
Source: Gatheral, Jaisson, Rosenbaum, Volatility is rough, 2014

κ = log(k/s0)
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Why implied volatility?

Fun fact:
Traders typically quote call prices in terms of implied vol rather
than actual prices because implied volatility accounts for
moneyness and maturity and makes option price quotes more easily
comparable!

? How to interpret?

! ▶ Option prices (translated into implied vol quotes) further “in”
(log(k/s0) < 0) or “out of the money” (log(k/s0) > 0) are
higher than one would anticipate from those “at the money”
(log(k/s0) = 0).

▶ Observed first after crash of October 19, 1987 (“black
monday”): -22% loss in Dow

▶ Constant vol insufficient to capture such extreme market
dynamics
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Black Monday and intraday volatility

Figure: Dow crash on October 19, 1987 and intraday volatility.

Source: https://seekingalpha.com/article/
204107-eight-decades-of-market-volatility

https://seekingalpha.com/article/204107-eight-decades-of-market-volatility
https://seekingalpha.com/article/204107-eight-decades-of-market-volatility
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A guided tour through volatility models

Hull & White model (1987)

dSt
St

=

σtdW
∗
t

dσt= σt(αdt + γdBt) ; σt = σ0e
γBt+(α−γ2/2)t

where B is another Brownian motion, possibly correlated with W ∗:

[W ∗,B]t = ρt for some ρ ∈ [−1, 1]

typically: ρ < 0 ; falling stock prices tend to increase volatility
(“leverage effect”)

by convention: “vol of vol” γ > 0

▶ incomplete model

▶ limt↑∞ σt = +∞ if α > γ2/2, = 0 if α < γ2/2



II.6.1-5

A guided tour through volatility models

Scott model (1987)

dSt
St

=

σtdW
∗
t

with σ2 = eVt for dVt= α(β − Vt) + γdBt

where B is another correlated Brownian motion

▶ SDE for V explicitly solvable: Ornstein-Uhlenbeck process

▶ V is a Gaussian process: normally distributed joint marginals

▶ mean-reversion of V to β (if α > 0)

▶
V allows for a stationary distribution: ∃ limt↑∞ Law(Vt) (ergodic)

▶ exp(V0/2) short-term volatility

▶ incomplete model

▶ no analytic vanilla option price formulae
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A guided tour through volatility models

Stein & Stein model (1991)

dSt
St

=

σtdW
∗
t

with dσt = α(β − σt) + γdBt

where B is another correlated Brownian motion

▶ SDE for σ explicitly solvable: Ornstein-Uhlenbeck process

▶ σ is a Gaussian process: normally distributed joint marginals

▶ mean-reversion to β (if α > 0)

▶
σ allows for a stationary distribution: ∃ limt↑∞ Law(σt) (ergodic)

▶ σ0 short-term volatility

▶ incomplete model

▶ negative volatility possible, volatility can vanish
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A guided tour through volatility models

Heston model (1993)

dSt
St

=

σtdW
∗
t

with σ2 = Vt for dVt= α(β − Vt) + γ
√

VtdBt

where B is another correlated Brownian motion

▶ Yamada-Watanabe-Theorem ensures existence and uniqueness

▶ mean-reversion to β (if α > 0)

▶ nonnegative volatility; does it vanish?

▶
σ allows for a stationary distribution: ∃ limt↑∞ Law(Vt) (ergodic)

▶ affine process

▶ semi-analytic call-option price formulae

▶ incomplete model



II.6.1-8

A guided tour through volatility models

Dupire’s local vol model (1994)

dSt
St

=

σ(t,St)dW
∗
t

with σ= σ(t, s) a function to be chosen suitably

▶ non-parametric model

▶ σ to be chosen so that model prices match observed
vanilla-option prices: Dupire formula (see below)

▶ complete model (provided σ does not vanish)
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A guided tour through volatility models

SABR model (Hagan 2003)

dSt

Sβ
t

=

σtdW
∗
t

with dσt =ασtdBt

d [B,W ∗]t

=

ρdt

where B is another correlated Brownian motion

▶ Stochastic Alpha Beta Rho

▶ β = 1 corresponds to a special instance of Hull-White

▶ limt↑∞ σt = 0

▶ for some reason very popular in foreign exchange markets

▶ incomplete model
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More on Dupire’s ‘local vol’-model

? How to determine the volatility profile σ̂ = σ̂(t, s) in Dupire’s
model

dŜt

Ŝt
= σ̂

(
t, Ŝt

)
dŴ ∗

t , Ŝ0 = S0?

! By making sure that vanilla options are priced correctly:
model calibration

market price for H = f (ST )
!
= model price for Ĥ = f (ŜT )

= Ê∗[f (ŜT )] = v̂(0,S0)

for all payoff profiles f and all maturities T > 0.
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Calibration of local vol

Assumption:

The market prices risks according to P∗ under which the asset price
evolves according to

dSt
St

= σtdW
∗
t

for some unknown “real-world” volatility process σ.

Then calibration of Dupire’s ‘local vol’-model to vanilla option
prices amounts to finding σ̂ = σ̂(t, s) such that

E∗[f (ST )]
!
= Ê∗[f (ŜT )] for all payoff profiles f and all T > 0.

In other words: The model Ŝ exhibits the same 1-dimensional
marginal distributions as the market assumes for S .
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Calibration of local vol



II.6.2-3

A mimicking theorem

Theorem (Gyöngy 1987, . . . )

Let S have volatility σ under P∗ and suppose

σ̂(t, s) :=
(
E∗ [σ2t ∣∣St = s

])1/2
is sufficiently regular. Then the solution Ŝ of the SDE

dŜt

Ŝt
= σ̂

(
t, Ŝt

)
dŴ ∗

t

has the same 1-dimensional marginal distributions as S :

Law (St |P∗) = Law(Ŝt |P̂∗), t ∈ [0,T ].
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Dupire’s formula

? How to determine the expectations E∗ [σ2t ∣∣St = s
]
, s > 0,

from market data?

Assumption:

Call option prices for arbitrary strikes k and maturities T are
observable, i.e., the mapping

c : (T , k) 7→ c(T , k) = E∗[(ST − k)+]

is given.

Remark
Only approximately true in practice, but a good starting point for
theoretical investigations.
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Dupire’s formula

Observation 1:
Call option prices c determine the 1-dimensional marginals of both
S under P∗ and Ŝ under P̂∗.
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Dupire’s formula

Observation 2:
Any choice of σ̂ = σ̂(t, s) also yields 1-dimensional marginals for Ŝ
under P̂∗ as determined by the Fokker-Planck-equation.
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Dupire’s formula
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Discussion of Dupire’s formula

σ̂2(T , k) =
2

k2
∂T c(T , k)

∂2kc(T , k)

▶ in reality only finitely many call option prices given and only
those at the money trading with sufficient liquidity to reliably
reflect market view

; need for interpolation schemes
▶ But how to ensure that such a scheme does not lead to

arbitrage?

Fact/reminder:

A call option price mapping c does not allow for arbitrage if and
only if

(i) k 7→ c(T , k) is decreasing and convex with c(T , 0+) = S0
and limk↑∞ c(T , k) = 0.

(ii) T 7→ c(T , k) is increasing.
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Discussion of Dupire’s formula

Conceptual problem: Intrinsic lack of consistency in time because
model is static!

Figure: S&P implied volatility surface as of June 20, 2013.
Source: Gatheral, Jaisson, Rosenbaum, Volatility is rough, 2014

Built-in need for constant recalibration. Not really a model,
certainly not a good one.
; Need models that are dynamically consistent and that can still
be calibrated, at least to some extent.
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More on the Heston model

dŜt

Ŝt
=

√
VtdŴ

∗
t

dVt = α(β − Vt)dt + γ
√

VtdBt

Existence of a nonnegative, strong solution to the latter SDE is a
classical result due to Yamada & Watanabe (see Karatzas-Shreve):

Vt = V (v0,B)t for some V : R+ × C [0,∞) → C [0,∞)

? Does volatility ever vanish?
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Feller test for explosions in the Heston model

Theorem
If d := 4αβ/γ2 < 2, we have P̂∗[Vt = 0 for some t ≥ 0] = 1; if
d ≥ 2 we have P̂∗[Vt = 0 for some t ≥ 0] = 0.

Interpretation

So if the upward drift αβ (effective whenever V is small) is large
enough compared to the local variance γ2V in that regime, level 0
will not be reached — otherwise it will be.
While intuitive, the precision with which these cases can be
distinguished is due to Feller’s test for explosions which allows one
to study the behavior of one-dimensional diffusions concerning the
boundary of their domains.
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Proof of Feller test for explosions in the Heston model
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Distributional properties of the Heston model

Theorem
If d := 4αβ/γ2 ∈ {2, 3, 4, . . . } then

(Vt)t≥0
(law)
= (

d∑
i=1

(X i
t )

2)t≥0

for d independent Ornstein-Uhlenbeck processes

dX i
t =

γ

2
dW i

t −
α

2
X i
t dt

with starting points such that
∑d

i=1(X
i
0)

2 = v0.

Hence,
√
V is the radial part of a d-dimensional

Ornstein-Uhlenbeck process. That V never reaches zero for d ≥ 2
is thus easy to understand.
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Distributional properties of the Heston model
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Distributional properties of the Heston model

Theorem (Dragulescu, Yakovenko, 2002)

Given starting values (s0, v0), log(Ŝt/S0) has the density

ft(s) =
1

π

∫ ∞

0
Real(exp(izs + Ft(z)))dz

where

Ft(z) =− v0
z2 − iz

c + λ coth(λt/2)
+
αβct

2

− 2αβ

γ2
log

(
cosh(λt/2) +

c

λ
sinh(λt/2)

)
with c = α+ iργt, λ =

√
cz2 + γ2(z2 − iz).
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Distributional properties of the Heston model

Theorem (Heston 1993)

Call-option prices in the Heston model are given by

Ê∗[(ŜT − k)+] = S0P1(s0, v0,T )− kP2(s0, v0,T )

with

Pj(s, v ,T ) =
1

2
+

1

π

∫ ∞

0
Real

exp(izlogk)P̂j(s, v ,T , z)

iz
dz

where

P̂j(s, v ,T , z) = exp(Aj(T , z) + Bj(T , z)v + iz log(s))
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Distributional properties of the Heston model

Theorem (Heston 1993 (continued))

for

Aj(T , z) =
a

γ2
((bj − ργzi + dj)T − 2 log

1− gje
djT

1− gj
)

Bj(T , z) =
bj − ργzi + dj

γ2
1− gje

djT

1− gj

and the constants

a = αβ, b1 = α− ργ, b2 = α, µ1 = 1/2, µ2 = −1/2,

dj =
√

(ργzi − bj)2 − γ2(2µjzi − z2),

gj =
bj − ργzi + dj
bj − ργzi − dj

.
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Upshot on the Heston model

▶ The affine structure of the Heston model allows for
computationally highly efficient Fourier-techniques to do
option pricing. (More on this in the special lecture
Computational Finance; exercise.)

▶ Fast calibration of the model parameters becomes possible
this way. See https://demonstrations.wolfram.com/
VolatilitySurfaceInTheHestonModel/

https://demonstrations.wolfram.com/VolatilitySurfaceInTheHestonModel/
https://demonstrations.wolfram.com/VolatilitySurfaceInTheHestonModel/
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A brief look at recent models

Rough volatility model (Gatheral et al. 2014, . . . )

dŜt

Ŝt
= σ̂tdŴ

∗
t

where in Gatheral et al. σ̂t = exp(Xt) for X with dynamics

dXt = α(β − Xt)dt + γdBH
t

where H ∈ (0, 1) is Hurst parameter of fractional Brownian motion

BH
t =

√
2HΓ(3/2− H)

Γ(H + 1/2)Γ(2− 2H)

(∫ t

−∞

dBs

(t − s)1/2−H
−
∫ 0

−∞

dBs

(t − s)1/2−H

)
Gaussian process with correlation function

Ê∗[BH
s BH

t ] =
1

2
(t2H + s2H − |t − s|2H)
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A brief look at recent models: Rough volatility

▶ Excellent fit for at-the-money volatility skew

ψ(T ) =

∣∣∣∣ ∂∂κ
∣∣∣∣
κ=0

σimp(κ,T )

∣∣∣∣ T↓0
≈ 1

T 1/2−H
with κ = log k/s0

Figure: Estimated S&P skew, June 20, 2013 and power-law fit
ψ(τ) = Aτ−0.4.
Source: Gatheral, Jaisson, Rosenbaum, Volatility is rough, 2014
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A brief look at recent models: Rough volatility

▶ Data suggests H ≈ 0.1, far away from the diffusion like
fluctuations (which have Hurst parameter 1/2)

▶ Previous models have finite skew for τ ↓ 0.
▶ neither Markovian nor a semimartingale unless H = 1/2
▶ model can also be calibrated to forward variance curve

T 7→ E∗[σ2T ]
▶ theory of rough affine models like rough Heston

(Rosenbaum-El Euch ’17)

σt =
√

Vt

Vt = v0 +

∫ t

0
α(β − Vu)

du

Γ(1/2 + H)(t − u)1/2−H

+

∫ t

0
γ
√
Vu

dBu

Γ(1/2 + H)(t − u)1/2−H

▶ microeconomic foundation from order-book dynamics
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A brief look at recent models: Local stochastic vol

Local stochastic vol model (Guyon & Henry-Labordère ’16)

dŜt

Ŝt
= at σ̂(t, Ŝt)dŴ

∗
t

▶ From Gyöngy’s result, we will have the “right” one-
dimensional marginals if

σ̂2Dupire(t, Ŝt) = Ê∗[a2t |Ŝt ]σ̂2(t, Ŝt)

▶ free to choose a, e.g. as in Heston

▶ above choice of σ̂ leads to novel McKean-Vlasov-dynamics

dŜt

Ŝt
=

at√
Ê∗[a2t |Ŝt ]

σ̂Dupire(t, Ŝt)dŴ
∗
t
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A brief look at recent models: Local stochastic vol

▶ open problem to prove existence and uniqueness for
interesting a

▶ conditioning: singular dependence of dynamics on Law(Ŝt , at)

▶ but: efficient calibration possible via use of particle methods

▶ open problem: prove of convergence of particle method under
singular McKean-Vlasov dynamics (“propagation of chaos”)
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Bonds

Firms can raise the money to fund themselves in several ways:

▶ draw on lines of credit from their banks

▶ issue shares of stock

▶ issue bonds

States find the money they spend mostly by

▶ collecting taxes

▶ issuing bonds

Key difference

▶ Shares of stock give ownership of the company and exposure
to its profits and losses (with limited liability).

▶ Bonds specify precise future payments (coupons) to be made
by the issuer until their maturity when their notional value is
due. Exposure to default and inflation risk.

? How to account for this difference in a financial model?
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Model what is traded: (Zero coupon) bonds

▶ A zero coupon bond pays its holder 1 unit of currency
(notional) at its maturity T (and nothing else).

▶ building block of more complex bonds
▶ price process P.(T ) = (Pt(T ))t∈[0,T ] ≥ 0
▶ clearly PT (T ) = 1, neglecting default, but typically

Pt(T ) ̸= 1 stochastic because of changes in time value of
money, perception of default risk or inflation, . . .

▶ at any time t same issuer can have bonds that differ in value
with maturity: term structure [t,∞) ∋ T 7→ Pt(T )

Challenges:

▶ Find “reasonable” nonnegative stochastic processes ending up
at the deterministic value 1.

▶ Ensure “reasonable” term structure and dependence of
random field (Pt(T )t≥0,T≥t).

▶ Comparing bond prices over wide ranges of maturity may not
make sense: accumulation of risk over time
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Model interest rates - but which?

Forward rate agreement (FRA)

▶ What interest can I secure at time t for 1$ to be invested
“safely” at time S > t until T > S?

▶ simply compounded forward rate for [S ,T ] contracted at time
t ≤ S

▶ link to zero bond prices:

Lt(S ,T ) :=

1

T − S

(
Pt(S)

Pt(T )
− 1

)

i.e.
Pt(S)

Pt(T )
=

1 + (T − S)Lt(S ,T )

Note: The factor T − S is used for normalization by the
period length to obtain comparable quantities Lt(., .).
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Model interest rates - but which?

Forward rate agreement (FRA) - no arbitrage argument
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Model interest rates - but which?

Simple spot rate for [t,T ]

▶ interest rate agreement to start “on the spot”: S = t

▶ link to zero bond prices

Lt(T ) :=

Lt(t,T ) =
1

T − t

(
1

Pt(T )
− 1

)

i.e.
1

Pt(T )
=

1 + (T − t)Lt(T )
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Model interest rates - but which?

Continuously compounded forward rate for [S ,T ] contracted
at time t
▶ analogon to FRA but with continuous compounding

▶ link to zero bond prices:

Rt(S ,T ) :=

− logPt(T )− logPt(S)

T − S

i.e.
Pt(S)

Pt(T )
=

exp(Rt(S ,T )(T − S)
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Model interest rates - but which?

Continuously compounded spot rate for [t,T ] at time t

▶ analogon to spot rate above but with continuous
compounding

▶ link to zero bond prices:

Rt(T ) :=

− logPt(T )

T − t

i.e.
1

Pt(T )
=

exp(Rt(T )(T − t))
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Model interest rates - but which?

Instantaneous forward rate for time S contracted at time t
▶ What interest rate can I lock in today for a given investment

held over the infinitesimal period [S ,S + dS ] in the future
S > t?

▶ analogon to FRA but for infinitesimal time period

▶ link to FRA and to zero bond prices:

Ft(S) = lim
T↓S

Rt(S ,T ) :=

−∂S logPt(S)

i.e.

Pt(T ) =

exp

(
−
∫ T

t
Ft(S)dS

)

▶ The mapping [t,∞) ∈ T 7→ Ft(T ) is called the forward curve
at time t; it is sometimes beneficial to re-parameterize it in
terms of the time-to-maturity τ = T − t, i.e., in the form
[0,∞) ∈ τ 7→ Ft(t + τ).
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Model interest rates - but which?

Instantaneous short rate/spot rate

▶ short term interest rate

r(t) = Ft(t) = lim
T↓t

Ft(T ) = − ∂

∂T

∣∣∣∣
T=t

logPt(T )

▶ real-world proxy: overnight lending rate
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Short rate models

Idea:
Model the dynamics of the “short rate” (rt)t≥0 on some filtered
probability space (Ω, (Ft),P∗) and make the measure P∗ an
equivalent martingale measure for bond prices by putting

Pt(T ) :=

E∗
[
exp

(
−
∫ T

t
rsds

)∣∣∣∣Ft

]
, t ∈ [0,T ].

Choose the parameters in the dynamics of (rt)t≥0 to calibrate your
model to observed bond prices/term structure.
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Examples

▶ Vasicek model

drt =

α(β − rt)dt + γdW ∗
t

▶ Cox-Ingersoll-Ross (CIR) model

drt =

α(β − rt)dt + γ
√
rtdW

∗
t

▶ Dothan model
drt =

αrtdt + γrtdW
∗
t

! Constant coefficients ; rather inflexible, bad for calibration
to market data for bond prices with many maturities
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Examples

▶ Hull-White extension of Vasicek model

drt =

α(t)(β(t)− rt)dt + γ(t)dW ∗
t

▶ Hull-White extension of CIR model

drt =

α(t)(β(t)− rt)dt + γ(t)
√
rtdW

∗
t

▶ Black-Derman-Toy model

drt =

α(t)rt + γ(t)rtdW
∗
t

▶ Ho-Lee model
drt =

α(t)dt + γdW ∗
t
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Calibration

? How to calibrate to market data, i.e., how to “invert the yield
curve”?

Example: Ho-Lee model

Recall
drt = α(t)dt + γdW ∗

t

i.e.

rt = rs +

∫ t

s
α(u)du + γ(W ∗

t −W ∗
s )
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Calibrating the Ho-Lee model
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Markovian structure gives PDE

? How to calibrate when the distribution of
∫ T
t rsds is not easily

computable?

! Markov property of short rate models allows for the use of
PDE method to compute bond prices.

Indeed:

Pt(T ) = E∗
[
exp

(
−
∫ T

t
rsds

)∣∣∣∣Ft

]
= p(t, rt ,T )

where p(., .,T ) should solve a linear PDE determined from the
dynamics of (rt) via Ito’s formula.
Of course: Explicit solvability of the PDE will help tremendously,
but may restrict flexibility.
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Special case: affine models

Fortunately, there is a rich class of models which lead to nice PDEs
and still retain a lot of flexibility:

Definition
If the function p in

Pt(T ) = E∗
[
exp

(
−
∫ T

t
rsds

)∣∣∣∣Ft

]
= p(t, rt ,T )

is of the exponentially affine form

p(t, r ,T ) =

exp (a(t,T )− b(t,T )r)

the associated model for (rt) is called affine and we say that we
have an affine term structure model.

? ▶ How to tell whether p will be of this form?
▶ How to compute a and b?
▶ How does this really help with the calibration?
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Special case: affine models

! If short rate dynamics are of the form

drt = µ(t, rt)dt + σ(t, rt)dW
∗
t

with

µ(t, r) =

α(t)r + β(t),

σ(t, r) =

√
γ(t)r + δ(t)

then the short rate model is affine.

Remark
Vasicek, CIR model along with their Hull-White extensions are
affine, but not the Dothan and the Black-Derman-Toy models.
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Special case: affine models
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Illustration: Hull-White extension of Vasicek model

Determining a and b:
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Illustration: Hull-White extension of Vasicek model

Calibration:
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Forward rate models

Idea:
Model the dynamics of the yield curve
([0,∞) ∋ τ 7→ Ft(t + τ))t≥0 as a function valued process starting
in today’s yield curve τ 7→ F0(τ); obtain bond prices via

1

Pt(T )
:=

exp

(∫ T

t
Ft(S)dS

)

.

Advantages:

▶ calibration to market data immediate

▶ flexible dynamics

Caveats:
▶ If we specify dynamics under real world measure P, how to

ensure no arbitrage?

▶ If we specify dynamics under pricing measure P∗, how to
ensure each discounted bond price process is a martingale?
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Heath-Jarrow-Morton drift condition
— for absence of arbitrage

Theorem
If forward rates follow dynamics of the form

dFt(T ) = αt(T )dt + σt(T )dWt

for some d-dimensional Brownian motion W , the induced bond
prices satisfy NFLVR (essentially) if and only if there is a
d-dimensional process λ such that

αt(T ) = σt(T ) ·
∫ T

t
σt(S)dS − σt(T ) · λt

that does not depend on the maturity T > 0.
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Heath-Jarrow-Morton drift condition
— for absence of arbitrage
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Heath-Jarrow-Morton drift condition
— for martingale dynamics of discounted bond prices

Theorem
If forward rates follow dynamics of the form

dFt(T ) = α∗
t (T )dt + σt(T )dW ∗

t

for some d-dimensional P∗-Brownian motion W ∗, the induced
bond prices P.(T ) = (exp(−

∫ T
t Ft(S)dS))t∈[0,T ] will turn into

P∗-martingales when discounted essentially if and only if

α∗
t (T ) = σt(T ) ·

∫ T

t
σt(S)dS .

Remark
Volatility structure σ(., .) under pricing measure fully determines
drift α∗(., .). Arbitrage free valuation thus only needs to specify
volatility, just as in option pricing theory.
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Heath-Jarrow-Morton drift condition
— for martingale dynamics of discounted bond prices
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Heath-Jarrow-Morton drift condition
— illustration

Take simplest possible volatility structure:

σt(T ) ≡ σ ∈ (0,∞)

Then:
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Numéraires

So far we discounted asset prices by the evolution exp
(∫ .

0 rsds
)
of

a bank account earning interest at rate (rt)t≥0.
The idea of discounting is to make future asset prices comparable
to today’s prices as it measures the value of one asset in units of
another one at the same time.
But of course this can be accomplished by any asset which has a
strictly positive price process N. Such an asset is called a
numéraire.

Example

Take Nt := Pt(T ), t ∈ [0,T ], the price process of a
non-defaultable bond.
By no arbitrage: N > 0 until maturity.

? How does option pricing change if we work with such a
numéraire?
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Option pricing with change of numéraire

If N > 0 is the price process of a tradable asset, under any fixed
pricing measure P∗ it gives us a strictly positive martingale

exp

(
−
∫ t

0
rsds

)
Nt , t ∈ [0,T ].

We can thus define a new probability measure PN via

dPN

dP∗

∣∣∣∣
Ft

:= exp

(
−
∫ t

0
rsds

)
Nt/N0, t ∈ [0,T ].

Clearly, if H ≥ 0 is a time T -payoff to be priced, we can write

πt(H) =

NtEN

[
H

NT

]
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Special case: Forward measure

? What does this look like for our example N = P.(T ) at
t = T?

We have

dPT

dP∗

∣∣∣∣
FT

:= exp

(
−
∫ T

0
rsds

)
PT (T )/P0(T ) =

exp

(
−
∫ T

t
rsds

)
/P0(T )

and so

πt(H) =

Pt(T )ET

[
H

PT (T )

∣∣∣∣Ft

]
= Pt(T )ET [H|Ft ]

! Hence, when pricing time T -payoffs under PT we do not have
to discount anymore?!
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Forward measure and forward price

Theorem
For a time T -payoff H ≥ 0,

ET [H|Ft ] =
πt(H)

Pt(T )

is the forward price for H contracted at time t ≤ T , i.e., it is the
price FwdTt (H) that is fixed at time t for delivery of H at time T
against payment of FwdTt (H) also at time T , without any
intermediate payments at any time in [t,T ).

For obvious reasons:

Definition
The measure PT is called forward measure for maturity T .

Clearly, forward prices of a time T -payoff H are martingales under
the forward measure PT with the same maturity—but not, in
general, under forward measures PT ′

with maturities T ′ ̸= T .
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Proof of forward price theorem



II.7.4-5

Forward formula for forward rates

Interestingly, we have

Ft(T ) = ET [rT |Ft ] , t ∈ [0,T ].

So forward rates are best predictions of future short rates under
the forward measure with the same maturity.
Indeed:

Ft(T ) = −∂T logPt(T ) = −∂TPt(T )

Pt(T )

= −
∂TE∗

[
exp

(
−
∫ T
t rsds

)∣∣∣Ft

]
Pt(T )

= −
E∗

[
exp

(
−
∫ T
t rsds

)
(−rT )

∣∣∣Ft

]
Pt(T )

=
πt(rT )

Pt(T )
= ET [rT |Ft ]
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Futures

Since forward contracts generate cash flows only at maturity, the
parties to the contract are exposed to counterparty risk as one of
them might go bust in the meantime.
This is why forwards are traded only “over the counter” (OTC)
where both sides in the transaction know each other. As a
consequence, forwards cannot be traded freely, making them rather
illiquid securities.
Futures alleviate the counterparty risk through an intermediary
(“clearing house”) that continually asks counterparties to post
margin payments determined by the future price process.
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Future prices

Definition
For a time T -payoff H ≥ 0, the future price process
(FutTt (H))t∈[0,T ] is determined by the requirement that

FutTT (H) = H

and that a position of one future at time t exposes its holder to a
payment of size dFutTt (H) at this time and no further payments at
all.

? How can that be a definition?
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Future price theorem

Theorem
Under any pricing measure P∗ with numéraire exp

(∫ .
0 rsds

)
where

futures on H do not allow for arbitrage, we must have

FutTt (H) = E∗ [H|Ft ] , t ∈ [0,T ].

In particular, future prices are P∗-martingales.

Corollary

For deterministic interest rates, future and forward prices coincide
for any maturity.
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Proof of the future price theorem
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Part III

Financial optimization problems

Merton’s portfolio optimization problem
Formulation
The principle of dynamic programming
Utility maximization via convex duality

The complete case
The incomplete case

Some recent results in financial optimization
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Portfolio optimization in the Black-Scholes model

Consider a financial market with two investment opportunities:

▶ money market account bearing constant interest r

▶ stock with price process

St = s0 exp

(
σWt +

(
µ− 1

2
σ2

)
t

)
,

Xt = e−rtSt = s0 exp

(
σWt +

(
µ− r − 1

2
σ2

)
t

)
, t ∈ [0,T ],

for some Brownian motion W on (Ω, (Ft),P).

? How best to invest a given initial wealth x > 0?

! Maximize the expected terminal wealth:

E
[
V x ,θ
T

]
→ max

θ admissible
where V x ,θ

T := x +

∫ T

0
θsdXs



III.8.1-1

Naive portfolio optimization problem ill-posed

But:
This optimization problem is ill-posed because

sup
θ admissible

E
[
V x ,θ
T

]
= +∞

unless P is a martingale measure when the problem is pointless as
the above supremum is x .
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Remedy: Utility maximization

? Why is this happening?

! ▶ High expected return achieved by taking large risk: |β| huge
▶ V x,θ

T → 0 almost surely for |β| → ∞: so pathwise typically
abysmal performance compensated in expectation by getting
incredibly rich in “a few” scenarios

; We need to take into account the investor’s risk aversion!

▶ Markowitz: Mean-Variance analysis

▶ Merton: Maximize expected utility which penalizes losses
more than it rewards gains (cf. D. Bernoulli, St. Petersburg
paradox)
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Typical utility functions

▶ power utility

u(x) =

{
x1−α

1−α for x > 0

−∞ for x < 0
with α > 0, α ̸= 1

Remark: α = 1 corresponds to log-utility: u(x) = log(x)

▶ exponential utility

u(x) = − exp(−αx) with α > 0.

Merton problem:

Maximize E
[
u(V x ,θ

T )
]
over all admissible strategies θ!
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The dynamic programming principle

Idea:
Do not focus directly on the optimal strategy but on the value it
generates:

u(T , x) := sup
θ adm.

E[u(V x ,θ
T )]

This is called the value function (or indirect utility). Assess the
performance of any strategy θ through its value process:

Uθ
t := u(T − t,V x ,θ

t ), t ∈ [0,T ].

This process describes what, at any time t, can still be
accomplished if starting from the present state of affairs one
controls the system optimally henceforth.

? How to really assess performance in a random world?
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Martingale optimality principle

Intuition:
▶ Suboptimal strategies will tend to lead to worse values: Uθ is

a supermartingale for all admissible θ.

▶ Optimal strategies will preserve value, at least on average:
Uθ∗ is a martingale for an optimal θ∗.

? How to pin down the value function from these intuitive
properties of value processes?
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Deriving the Hamilton-Jacobi-Bellman equation
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Questions on the Hamilton-Jacobi-Bellman equation

? ▶ Is this equation solvable? How?
▶ If we have found a solution, how to determine a candidate for

an optimal strategy?
▶ How to prove that this candidate is actually optimal?
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Idea to prove optimality
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Idea to find a candidate strategy
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Idea to solve the HJB-equation in the power utility case
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Verification theorem

Theorem
The value function of the Merton problem for power utilities is
given by

u(T , x) = exp

(
1

2
(1− α)

(µ− r)2

ασ2
T

)
x1−α

1− α
, x > 0,T > 0

and the optimal strategy is to always invest the same fraction

π∗ =
µ− r

ασ2

of total wealth in stock.
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Proof of the verification theorem
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General utility maximization problem

Consider a financial model with two investment opportunities:

▶ money market account bearing predictable interest (rs) with∫ t
0 |rs |ds <∞, t ≥ 0,

▶ stock with continuous price process (St) allowing NFLVR

both specified on a common filtered probability space (Ω, (Ft),P).
Consider an economic agent/investor with

▶ initial capital x > 0,

▶ utility function u continuous, increasing and strictly concave
on [0,∞) with u(x) = −∞ for x < 0, u(0) = 0, and

u′(0+) = ∞, u′(∞) = 0 (“Inada-conditions”)

? How to maximize the expected utility from terminal wealth

E
[
u(V x ,θ

T )
]
→ max

θ admissible

when above expectation is set to −∞ if E[u−(V x ,θ
T )] = ∞?
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Mathematical challenges

Problems:
▶ Is there a solution to this optimization problem?

▶ If so, what can we say about it?

▶ How to overcome the lack of a Markovian structure which is
key for dynamic programming and the approach via the
Hamilton-Jacobi-Bellman PDE?

Remedy:

View the problem as a concave optimization problem and proceed
via first order conditions which will not only be necessary but also
sufficient for optimality!
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The complete case: |P| = 1

Assumption:

Suppose the market model is complete, i.e., all local martingales
can be represented via integrals w.r.t. X , i.e., there is exactly one
equivalent martingale measure |P| = 1.

Lemma
Under the above completeness assumption, an FT -measurable
random variable H ≥ 0 is dominated by the discounted terminal
wealth V x ,θ

T of some admissible strategy θ starting with initial
capital x > 0 if and only if

E∗[H] ≤ x ,

where P∗ is the unique equivalent martingale measure in P.

; Instead of maximizing over predictable processes θ we can
maximize over random variables H ≥ 0!
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The complete case: First order conditions

Standing assumption: u(x) := supE∗[H]≤x E[u(H)] <∞

Lemma
For H∗ ≥ 0 to be the terminal wealth of an optimal investment
strategy with initial capital x it is necessary and sufficient that

E∗ [H∗] = x

and

E
[
u′(H∗)H

]
≤ E

[
u′(H∗)H∗] <∞ for any other H ≥ 0 with E∗ [H] ≤ x .

; Hence, an optimizer H∗ for our concave optimization problem
turns out to be also the optimizer for a linear optimization
problem (with a single linear constraint to boot)!
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Proof of first order conditions in the complete case
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The complete case: Solution to first order conditions

Corollary

Under the Inada conditions, H∗ ≥ 0 with

E∗ [H∗] = x

will satisfy the first order conditions

E
[
u′(H∗)H

]
≤ E

[
u′(H∗)H∗] for any other H ≥ 0 with E∗ [H] ≤ x

if and only if there is y > 0 such that

u′(H∗) = y
dP∗

dP
, i.e., H∗ = (u′)−1

(
y
dP∗

dP

)
.

In particular, Hy := (u′)−1
(
y dP∗

dP
)
will be optimal for initial capital

x > 0 if y > 0 is chosen such that E∗Hy = x , which can actually
be arranged uniquely.
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Proof of solution to first order conditions
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Reconciling general findings with Merton’s solution

? Is the solution found via first order conditions the same as the
one found via the solution of the Hamilton-Jacobi-Bellman
equation in the Merton problem?
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Reconciling general findings with Merton’s solution
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The incomplete case

Let us now allow for |P| = ∞ and try to proceed similarly as in
the complete case.

? Can we characterize the payoffs that can be dominated by an
admissible strategy starting with a given initial capital?
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Super-replication theorem

Theorem
An FT -measurable H ≥ 0 satisfies H ≤ x +

∫ T
0 θdX for some

admissible θ (i.e., it is super-replicable with initial capital x) if and
only if

sup
P∗∈P

E∗[H] ≤ x .

In fact, the super-replication price process for H is of the form

Ut := ess sup
P∗∈P

E∗ [H|Ft ] = sup
P∗∈P

E∗[H]+

∫ t

0
θdX−At , t ∈ [0,T ],

for some admissible θ and some nondecreasing, rightcontinuous
adapted A ≥ 0.

Remark
Note that the super-replication price process U is a
supermartingale under any equivalent local martingale measure P∗

for X , i.e., even a P-supermartingale.
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Optional decomposition

Theorem
A right-continuous process U ≥ 0 is a P-supermartingale if and
only if

Ut = U0 +

∫ t

0
θdX − At , t ∈ [0,T ],

for some admissible θ and some nondecreasing, rightcontinuous
adapted A ≥ 0.

Remark
This result can be viewed as a variant of the Doob-Meyer
decomposition valid for any supermartingale. While it involves a
right-continuous, increasing A that is only adapted (actually
optional) rather than even predictable, it is more precise about the
structure of the martingale part which is identified as a stochastic
integral w.r.t. the local P-martingale X . This is why the result is
called optional decomposition. It is not unique though.
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Proof of the optional decomposition theorem
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Existence of an optimizer

Standing assumption: u(x) := supE∗[H]≤x for P∗∈P E[u(H)] <∞

Theorem
If u exhibits sublinear growth

lim sup
x↑∞

u(x)

x
= 0,

then for any initial capital x > 0 there is an Hx ≥ 0, uniquely
determined up to a P-null set, which solves the problem to

Maximize E[u(H)] over H ≥ 0 such that E∗[H] ≤ x for all P∗ ∈ P.

In particular, for any utility function which is bounded from above
there is a unique solution to the corresponding utility maximization
problem.



III.8.3-14

Proof
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Characterizations of uniform integrability

Theorem
For any family of random variables (Xi )i∈I on a probability space
(Ω,F ,P) the following assertions are equivalent:

(i) (Xi )i∈I is uniformly integrable.

(ii) limc↑∞ supi∈I E[|Xi |1{|Xi |≥c}] = 0

(iii) (Xi )i∈I is bounded in L1(P) and for every ε > 0 there is δ > 0
such that E[|Xi |1A] < ε for any A ∈ F with P[A] < δ.

(iv) (Φ(Xi ))i∈I is bounded in L1(P) for some nondecreasing
function Φ with Φ(x)/x ↗ ∞ as x ↑ ∞. (de la
Vallée-Poussin)

(v) (Xi )i∈I is weakly relatively compact in L1(P). (Dunford-Pettis)
(vi) (Xi )i∈I is bounded in L1(P) and for any decomposition

Ω = ∪nAn of Ω into disjoint An ∈ F , n = 1, 2, . . . , we have
limn supi∈I E[|Xi |1An ] = 0.
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A version of Komlos’s lemma due to
Delbaen-Schachermayer

Lemma
For every sequence of random variables Xn ≥ 0 on a probability
space (Ω,F ,P), there are

X̃ n ∈ conv(X n,X n+1, . . . ), n = 1, 2, . . . ,

which almost surely converge to some random variable X with
values in [0,∞].

Remark
This kind of property is sometimes referred to as convex
compactness. It is remarkable that this is to be had for free despite
the, in general, infinite dimensional setting where compactness is
often hard to establish (or even hope for).
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Proof
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Construction of a solution in the incomplete case?

The first order condition in the incomplete case reads:

Lemma
For H∗ ≥ 0 to be the terminal wealth of an optimal investment
strategy with initial capital x it is necessary and sufficient that

sup
P∗∈P

E∗ [H∗] = x

and

E
[
u′(H∗)H

]
≤ E

[
u′(H∗)H∗] <∞ for H ≥ 0 with sup

P∗∈P
E∗ [H] ≤ x .

; Hence, an optimizer H∗ for our concave optimization problem
turns out to be also the optimizer for a linear optimization
problem but with infinitely many linear constraints (in general).
; No more general solution to write down, but . . .
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The incomplete case: Convex duality

Observe that for any H ≥ 0 with H ≤ x +
∫ T
0 θdX for some

admissible θ and for any choice of martingale measure P∗ ∈ P and
y > 0, we have

E[u(H)] ≤
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Duality gap

? How to ensure “=” holds everywhere—no duality gap?
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Final remarks on the incomplete case

▶ theory with jumps considerably more involved

▶ existence for the dual problem via Komlos, but only in

D(y) = {D ≥ 0 : D ≤ YT for some Y ≥ 0 such that

YV 1,ϕ P-supermart. for any adm. ϕ}

provided the dual problem is finite for any y > 0

▶ necessary & sufficient for existence and absence of duality gap
without extra assumption on model: reasonable asymptotic
elasticity

lim sup
x→∞

u′(x)

u(x)/x
< 1

(rather than just ≤ 1 which always holds true !?!)

▶ for details see Kramkov&Schachermayer (1999, 2001)
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Illustration: Utility maximization in Heston model

Heston model
▶ dRt :=

dXt
Xt

=
√
νtdWt

+µ
√
νtdt

▶ dνt = (ϑ− λνt)dt + γ
√
νtdBt

▶ (B,W ) Brownian motions with correlation [B,W ]t = ρt.

Power utility from terminal wealth

▶ u(x) = x1−α/(1− α) for some α > 0, u′(x) = x−α, x > 0

▶ V = V x ,π solves V0 = x , dVt = πtVtdRt , i.e.,
Vt = xE (

∫
πdR)t

▶ scaling argument: u(x) = x1−αu(1) ; w.o.l.g. x = 1
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Optimal investment theorem for Heston model

Theorem
Define a := −(1− (1− α)/α)γ2ρ2/2, b := λ− (1− α)/αγρµ,
c := −µ2(1− α)/(2α) and
d := b2 − 4ac = λ2 − (2λγρµ+ γ2µ2)(1−α)/α and define c(t) in
case d > 0 as

c(t) := −2c
e
√
d(T−t) − 1

e
√
d(T−t)(b +

√
d)− b +

√
d
;

in case d = 0 and either b > 0 or b < 0, T < −2/b as

c(t) :=
1

a(T − t + 2/b)
− b

2a
;

. . .
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Optimal investment theorem for Heston model (ctd.)

Theorem
in case d < 0 and either b > 0, T < 2(π − arctan(

√
−d/b))/

√
−d

or b = 0, T < π/
√
−d , or b < 0, T < 2 arctan(

√
−d/− b))/

√
−d

as

c(t) := −2c
sin(

√
−d(T − t)/2)√

−d cos(
√
−d(T − t)/2) + b sin(

√
−d(T − t)/2)

.

Then in each of the above cases it is optimal to invest at time
t ∈ [0,T ] the fraction

π̂t =
µ+ γρc(t)

α

of one’s total wealth in the stock; the resulting maximal expected
utility as off time t with x to spend and present vol νt is

u(x) = u(t, x , νt) = exp

(∫ T

t
ϑc(s)ds + c(t)νt

)
x1−α

1− α
.
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Remarks

▶ When α ∈ (0, 1), the problem may possibly degenerate in the
sense that u(x) = ∞; in fact, this happens precisely when the
time horizon T is too large to fall in either of the cases
distinguished above.

▶ For details see Kallsen and Muhle-Karbe, Utility maximization
in affine stochastic volatility models. International Journal of
Theoretical and Applied Finance, 13:459-477, 2010.
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Merton’s portfolio optimization problem
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