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1 Linear Fokker–Planck equations

1.1 Probabilistic basics and motivation

Set R+ := [0,∞), N := {1, 2, 3, . . . } and N0 := {0} ∪ N. The distribution of a
random map X is denoted by LX .

We begin by repeating the definition of solutions to stochastic differential equa-
tions on Rd

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, (SDE)

where the drift- and diffusion-coefficients

b : R+ × Rd → Rd, σ : R+ × Rd → Rd×d

are assumed to be product-measurable w.r.t. the usual Borel σ-algebras.

Definition 1.1.1. (i) A (probabilistically weak) solution to (SDE) is a triple con-
sisting of a filtered probability space (Ω,F, (Ft)t>0,P), a d-dimensional stan-
dard (Ft)-Brownian motion B and an (Ft)-adapted Rd-valued stochastic pro-
cess X = (Xt)t>0 on Ω such that

E
ï ∫ T

0

|b(t,Xt)|+ |σ(t,Xt)|2 dt
ò
<∞, ∀T > 0

and P-a.s.

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs, ∀t > 0.

(ii) If LX0 = µ, the weak solution has initial value µ.
We often simply say ”X is the weak solution”. Note that the definition implies

that the paths t 7→ Xt(ω) are continuous P-a.s.

To consider an initial time s > 0, replace 0 in the above definition by s. One then
says X has initial condition (s, µ).

The path law, or simply law, of a stochastic process X with continuous paths on a
probability space (Ω,F,P) is its distribution on C+Rd := C(R+,Rd), i.e. the image
measure (on path space) LX = P ◦X−1 of X : Ω→ C+Rd.

Remark 1.1.2. (i) More generally, for any m ∈ N, one may consider σ with values
in Rd×m and m-dimensional Brownian motions. We will, however, restrict
to the case σ ∈ Rd×d.
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1 Linear Fokker–Planck equations

(ii) The law of a weak solution solves the martingale problem associated with b
and 1

2σσ
T and, vice versa, for every solution P of the latter, there is a weak

solution to (SDE) with law P . Thus, we will often identify weak solutions,
their laws and solutions to the associated martingale problem.1

From a probabilistic point of view, the following proposition is one main motiva-
tion to study Fokker–Planck equations. Set a = (aij)i,j6d, aij := 1

2 (σσT )ij . The
matrix a(t, x) is symmetric and nonnegative definite for all (t, x) ∈ R+ × Rd.

Proposition 1.1.3. Let X be a weak solution to (SDE). Then its probability measure-
valued weakly continuous curve of one-dimensional time marginals

t 7→ LXt =: µt, t > 0,

satisfies (using Einstein summation convention and denoting by ∂i and ∂2
ij first and

second order spatial partial derivatives)∫
Rd
ϕ(x) dµt(x) =

∫
Rd
ϕ(x) dµ0(x)+

∫ t

0

∫
Rd
aij(s, x)∂2

ijϕ(x)+bi(s, x)∂iϕ(x) dµs(x)ds

for all t > 0 and ϕ ∈ C∞c (Rd) (the latter denotes the space of smooth real-valued
functions on Rd with compact support).

Proof. Exercise 1.1.

The distributional formulation of the previous equality is

∂tµt = ∂2
ij

(
aijµt

)
− ∂i

(
biµt

)
,

which, as we shall see, is a Fokker–Planck equation for Borel (probability) measures
on Rd. If

µt = %t(x)dx

and % : R+ × Rd → R and aij , bi are sufficiently regular, then

∂t%t = ∂2
ij(aij%t)− ∂i(bi%t)

holds pointwise, i.e. in the classical, strong sense.

Hence: Marginals of SDE-solution solve a deterministic PDE for measures!

Spaces of measures, vague and weak topology For a topological space Y , M+
b (Y )

denotes the set of nonnegative finite Borel measures on Y . We write M+
b := M+

b (Rd)
when no confusion about the dimension d can occur. Denote by Cc(Y ) and Cb(Y )
the spaces of continuous functions g : Y → R which are compactly supported and
bounded, respectively. Let now Y be a metric space.

1We briefly review the definition and basic theory of martingale problems later on.
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1 Linear Fokker–Planck equations

Definition 1.1.4. (i) The vague, respectively weak topology on M+
b (Y ) is the initial

topology of the maps µ 7→
∫
Y
f dµ for all f ∈ Cc(Y ), respectively f ∈ Cb(Y ),

i.e. the coarsest topology τ on M+
b (Y ) such that each of these maps is con-

tinuous between (M+
b (Y ), τ) and R.

(ii) (µn)n∈N converges vaguely (weakly) to µ in M+
b (Y ), if it converges in the vague

(weak) topology, i.e. if
∫
Y
f dµn

n→∞−−−−→
∫
Y
f dµ for all f ∈ Cc(Y ) (f ∈ Cb(Y )).

Remark 1.1.5. (i) µn
n→∞−−−−→ µ weakly =⇒ µn(Y )

n→∞−−−−→ µ(Y ).

(ii) Wrong for vague convergence: Y = R, µn = δn, µ = 0 (the trivial measure),

then µn
n→∞−−−−→ µ vaguely, µn(R) = 1 for all n ∈ N and µ(R) = 0.

(iii) Let Y = Rd. The set of subprobability measures

SP := M+
b ∩ {µ : µ(Rd) 6 1}

is the positive hemisphere of the unit ball in Cc(Rd)
′

(the closure of Cc(Rd)
w.r.t. the topology of uniform convergence), which is weak-∗-sequentially com-
pact. In particular: Every sequence of subprobability measures has a
vaguely convergent subsequence. This is not true when ”weakly” replaces
”vaguely”.

(iv) M+
b and P (the set of Borel probability measures on Rd) with the weak topology

and SP with the vague topology are Polish spaces.

1.2 Definition, existence, uniqueness

Let d ∈ N and consider Borel coefficients

b = (bi)i6d, a = (aij)i,j6d, c, bi, aij , c : R+ × Rd → R, i, j 6 d.

We always assume that a(t, x) is symmetric nonnegative definite for all (t, x). The
class of linear Fokker–Planck equation (FPE) we intend to study is

∂tµ = ∂2
ij

(
aij(t, x)µ)− ∂i

(
bi(t, x)µ

)
+ c(t, x)µ, (FPE)

often with c = 0. These are linear equations, since the coefficients do not depend
on the solution. Setting

La,b,c : ϕ 7→ La,b,cϕ(t, x) := aij(t, x)∂2
ijϕ(x) + bi(t, x)∂iϕ(x) + c(t, x)ϕ(x),

a shorter way of writing (FPE) is

∂tµ = L∗a,b,cµ,

where L∗ denotes the formal dual of L.
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1 Linear Fokker–Planck equations

Definition 1.2.1. A locally finite Borel measure µ on (0,∞)× Rd satisfies (FPE) if
aij , bi, c ∈ L1

loc

(
(0,∞)× Rd;µ

)
and for every ϕ ∈ C∞c ((0,∞)× Rd) we have∫

(0,∞)×Rd
∂tϕ+ La,b,cϕdµ = 0.

We always restrict to nonnegative measures µ given by a family of nonnegative
locally finite Borel measures (µt)t>0 on Rd via µ = µtdt, i.e.∫

(0,∞)×Rd
f(t, x) dµ(t, x) =

∫ ∞
0

Å∫
Rd
f(t, x) dµt(x)

ã
dt, (1.2.1)

and we usually say (µt)t>0 is the solution. In order for the integral on the right hand-
side to make sense, the measures (µt)t>0 need to be a Borel curve, i.e. t 7→ µt(A)
has to be Borel for every A ∈ B(Rd).

Remark 1.2.2. Note that not every locally finite nonnegative Borel measure µ on
(0,∞) × Rd can be expressed as in (1.2.1). Indeed, by the disintegration theorem,
one may always represent∫

(0,∞)×Rd
f(t, x) dµ(t, x) =

∫ ∞
0

Å∫
Rd
f(t, x) dµt(x)

ã
dη1(t), (1.2.2)

where η1 = µ ◦ (ev1)−1 (ev1 : (0,∞) × Rd → (0,∞), ev1(t, x) = t denotes the
projection on the first component). Clearly, this can be rewritten as in (1.2.1) if
and only if η1 � dt.

We call µ a (sub-)probability solution, respectively a solution with constant mass,
if every µt is a (sub-)probability measure or if µt(Rd) = µs(Rd) for all t, s > 0,
respectively. Depending on context, these conditions may also be understood for
dt-almost surely.

Remark 1.2.3. If (µt)t>0 solves (FPE) and (µ̃t)t>0 is a Borel curve of locally fi-
nite Borel measures such that µt = µ̃t for dt-a.a. t > 0, then (µ̃t)t>0 also satis-
fies (FPE). Hence solutions are only determined dt-a.s., and a natural question is
whether the dt-equivalence class of a solution contains a vaguely or weakly contin-
uous representative. As we shall see, this is true under very broad assumptions.

Definition 1.2.4. A solution (µt)t>0 to (FPE) has initial value ν ∈M+
b , if for every

ϕ ∈ C∞c (Rd) there is a set of full dt-measure Oϕ ⊆ (0,∞) such that∫
Rd
ϕdν = lim

t→0,t∈Oϕ

∫
Rd
ϕdµt. (1.2.3)

In this case, one sets µ0 := ν and considers (µt)t>0 instead of (µt)t>0. The pair
(FPE)+(1.2.3) is the Cauchy problem associated with the FPE.

Clearly, the initial value is unique (Exercise 1.2). Equation (1.2.3) does not imply

vague convergence µt
t→0−−−→ ν, but it does, if Ocϕ = ∅ for all ϕ.

For the case µ = (µt)t>0, the following equivalent definition of solution to (FPE)
is very useful.
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1 Linear Fokker–Planck equations

Definition 1.2.5. A Borel curve of locally finite Borel measures (µt)t>0 is a solution
to (FPE) with initial value ν, if aij , bi, c ∈ L1

loc

(
(0,∞) × Rd;µtdt

)
and for every

ϕ ∈ C∞c (Rd) there is a set of full dt-measure Jϕ ⊆ (0,∞) such that for all t ∈ Jϕ∫
Rd
ϕdµt =

∫
Rd
ϕdν + lim

τ→0+

∫ t

τ

∫
Rd
La,b,cϕdµsds. (1.2.4)

Lemma 1.2.6. (i) If aij , bi, c ∈ L1
loc

(
[0,∞)× Rd;µtdt

)
, then

lim
τ→0+

∫ t

τ

∫
Rd
La,b,cϕdµsds =

∫ t

0

∫
Rd
La,b,cϕdµsds. (1.2.5)

In this case: Jcϕ = ∅ for all ϕ if and only if t 7→ µt is vaguely continuous on
[0,∞).

(ii) If c = 0, t 7→ µt is vaguely continuous and the first assumption in (i) is
strengthened to aij , bi ∈ L1

(
[0, T ] × Rd;µtdt

)
for all T > 0, then (µt)t>0

has constant mass. Moreover, in this case (1.2.5) holds for all ϕ ∈ C2
b (Rd),

the space of real-valued bounded continuous functions on Rd with uniformly
bounded first- and second-order derivatives.

Proof. (i) The first assertion holds, since the compact support of ϕ implies [t 7→∫
Rd La,b,cϕdµt] ∈ L

1
loc([0,∞); dt), which yields the claim. The second asser-

tion follows from the continuity of the map t 7→
∫ t

0
f(t, x) dµt(x)dt for every

f such that [t 7→
∫
f(t, ·)dµt] ∈ L1

loc

(
[0,∞); dt

)
.

(ii) The first part is Exercise 1.3, the second part follows by a standard approxi-
mation.

The proof of the following result can be found on p.243 in [9].

Proposition 1.2.7. µ given by (1.2.1) satisfies (FPE) with initial value ν in the sense
of Definition 1.2.1 and 1.2.4 if and only if (µt)t>0 satisfies Definition 1.2.5.

We may now reformulate Proposition 1.1.3 by saying that the one-dimensional
time marginals µt := LXt of a weak solution X to SDE are a weakly continuous
probability solution to the Fokker–Planck equation FPE, with c = 0, a = 1

2σσ
T ,

b, and with initial value LX0
(which may be prescribed on the level of the SDE).

Definition 1.1.1 entails∫ T

0

∫
Rd
|aij(t, x)|+ |bi(t, x)|dµt(x)dt = E

ï ∫ T

0

|aij(t,Xt)|+ |bi(t,Xt)|dt
ò
<∞

for all T > 0 and i, j 6 d, i.e. all assertions of Lemma 1.2.6 hold.
This relation between SDEs and FPEs is one main reason why we will mostly be

interested in the case c = 0 and in weakly continuous probability solutions in the
general sense of the previous definitions.
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1 Linear Fokker–Planck equations

Remark 1.2.8. Several generalizations of and related equations to (FPE) have been
studied in the literature, for instance equations for measures on more general state
spaces, e.g. on open subsets U ⊆ Rd, infinite-dimensional spaces and manifolds. A
related class of equations are elliptic FPEs

L∗a,b,cη = 0.

Depending on time, we might briefly touch these aspects during the course of the
lecture. Moreover, we will study nonlinear Fokker–Planck equations. The term
nonlinear refers to coefficients depending on the solution µ.

Equation (FPE), Definitions 1.2.1,1.2.4,1.2.5 and all previous assertions can ob-
viously be generalized to an initial time s > 0. In this case, the initial condition is
the pair (s, ν). Also, it is obvious how to modify the definitions and previous results
to the time interval (0, T ) instead of (0,∞) for some T > 0.

1.2.1 An existence result

There are many results on the existence of solutions to the Cauchy problem (FPE)+(1.2.3).
Here, we present one result (Proposition 1.2.11 below) whose proof proceeds via
standard arguments for the construction of solutions to PDEs with irregular coef-
ficients: First, the coefficients and initial datum are approximated by more regu-
lar ones, for which existence of solutions is known or easy to obtain. Then, one
proves uniform estimates of the corresponding solutions in order to extract a con-
verging subsequence. Finally, one shows that its limit solves the original equa-
tion. We restrict to a finite time interval [0, T ], i.e. we consider Borel coefficients
aij , bi, c : [0, T ]× Rd → R. The case T =∞ can be obtained by a simple variation.
We need the following two basic results. For their proofs, see [9, Ch.6.3, 6.6].

Lemma 1.2.9. Assume there are numbers 0 < m < M such that m Id 6 a(t, x) 6
M Id for all (t, x) ∈ [0, T ] × Rd. Moreover, let aij, its first- and second-order
derivatives, bi and its first-order derivatives, and c be bounded and continuous on
(0, T ) × Rd and Hölder continuous in x uniformly in t of some degree α ∈ (0, 1).
Finally, suppose for some C > 0

|aij(t, x)− aij(s, y)| 6 C(|x− y|α + |t− s|α2 ), ∀(t, x) ∈ (0, T )× Rd.

Then for every probability density %0 ∈ Cb(Rd) there is a subprobability solution
(µt)t∈[0,T ) to (FPE) with initial datum ν = %0dx such that µt = %tdx,

[(t, x) 7→ %t(x)] ∈ C1,2((0, T )× Rd) ∩ C([0, T )× Rd),

and for dt-a.e. t ∈ (0, T )

µt(Rd) 6 ν(Rd) +

∫ t

0

∫
Rd
c dµsds.

For the next two results, we denote by U ⊆ Rd an arbitrary open Euclidean ball
and by J an arbitrary set of type [t0, T − t0], t0 > 0.
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1 Linear Fokker–Planck equations

Lemma 1.2.10. Let µ = (µt)t∈(0,T ) be a solution to (FPE), and assume on every
J×U a is bounded, Hölder-continuous in x uniformly in t and there is m(J, U) > 0
such that m(J, U) Id 6 a(t, x) for all (t, x) ∈ J × U .

Then µt = %t(x)dx, % ∈ L
d+3
d+2

loc ((0, T ) × Rd), and for every J × U and every
neighborhood W of J × U with compact closure in (0, T )× Rd one has

|%|
L
d+3
d+2 (J×U)

6 C̄,

where C̄ depends on d, infW det a, |a|L∞(W ), |b|L1(W ;µ), |c|L1(W ;µ), J, U , W and
µtdt(W ).

The main result of this section is the following proposition.

Proposition 1.2.11. Suppose c 6 0, and that aij , bi and c are bounded on each
[0, T ]× U . Assume for every U there are numbers 0 < m(U) < M(U) such that

m(U) Id 6 a(t, x) 6M(U) Id, ∀(t, x) ∈ [0, T ]× U.

Then, for every ν ∈ P, there is a subprobability solution µ = (µt)t∈[0,T ) to (FPE)

with initial datum ν such that c ∈ L1((0, T )× Rd;µtdt) and for dt-a.e. t ∈ (0, T )

µt(Rd) 6 ν(Rd) +

∫ t

0

∫
Rd
c dµtdt. (1.2.6)

The result can be extended to the case c 6 c0 for c0 > 0.

Proof. We divide the proof into five steps.
1. Define aij(t, x) = δij , bi(t, x) = 0 = c(t, x) for (t, x) ∈ [0, T ]c × Rd, let ω :

Rd+1 → R satisfy

ω ∈ C∞c (Rd+1), ω > 0,

∫
Rd+1

ω(t, x) dxdt = 1, ω(t, x) = 0 for |x| > 1,

set ωε(t, x) := ε−d−1ω(xε−1, tε−1) for ε > 0, and, for n ∈ N,

anij := aij ∗ ω 1
n

+ n−1δij , bni := bi ∗ ω 1
n
, cn := c ∗ ω 1

n
.

For each n and l, the functions anij , b
n
i , c

n and its derivatives up to order l are

uniformly bounded on Rd+1. Moreover, an(t, x) > n−1 Id for all (t, x) ∈ Rd+1.
Each of the sequences (anij)n∈N, (b

n
i )n∈N, (c

n)n∈N converges in Lp([0, T ] × Uk) for
each p > 1 and k ∈ N, where Uk denotes the ball centered at the origin of radius k,
with limits aij , bi and c, respectively.

Let νn = ηndx, ηn ∈ C∞c (Rd), be a sequence of probability measures converging
weakly to ν, and consider the Cauchy problems

∂tµ
n = ∂2

ij

(
anijµ

n
)
− ∂i

(
bni µ

n
)

+ cnµn, µn|t=0 = ηn. (1.2.7)

7



1 Linear Fokker–Planck equations

By Lemma 1.2.9, for each n ∈ N, there is a subprobability solution (µnt )t∈[0,T ) to

(1.2.7) such that [(t, x) 7→ %nt (x)] ∈ C1,2((0, T )×Rd)∩C([0, T )×Rd), and for dt-a.e.
t ∈ (0, T )

µnt (Rd) 6 νn(Rd) +

∫ t

0

∫
Rd
cn dµns ds. (1.2.8)

In particular, (1.2.5) holds and (1.2.4) is satisfied for every t ∈ (0, T ), since t 7→
%t(x)dx is vaguely continuous.

2. By definition of an, we have, independently of n,

an(t, x) > mk+1 Id, ∀(t, x) ∈ [0, T ]× Uk,

where mk+1 = m(Uk+1) is the number from the hypotheses of the proposition
corresponding to the ball Uk+1. In addition, for any k and n we have (the L∞-
spaces in the next lines are understood with respect to the measure dtdx)

|anij |L∞([0,T ]×Uk) 6 |a|L∞([0,T ]×Uk+1) + 1,

|bni |L∞([0,T ]×Uk) 6 |bi|L∞([0,T ]×Uk+1), |cn|L∞([0,T ]×Uk) 6 |c|L∞([0,T ]×Uk+1).

Lemma 1.2.10 implies for every k > 2∫
[Tk−1,T (1−k−1)]×Uk−1

%nt (x)
d+3
d+2 dxdt 6 Ck, (1.2.9)

where Ck depends on mk+1 and on the right hand-sides of the previous three es-

timates, but not on n. Since L
d+3
d+2
(
[Tk−1, T (1 − k−1)] × Uk−1

)
is reflexive, the

sequence (%n)n∈N contains, for every k > 2, a weakly converging subsequence in
that space. By a standard diagonal argument, we may consider a subsequence, still

denoted (%n)n∈N, which converges weakly in L
d+3
d+2
(
[Tk−1, T (1 − k−1)] × Uk−1

)
for

every k > 2, to a limit % (which does not depend on k). Set, for t ∈ (0, T ),

µt := %(t, x)dx

(note that this defines (µt)t∈(0,T ) up to a set of dt-measure zero).

3. Let ϕ ∈ C∞c (Rd). There is C(ϕ) > 0, independent of n, such that for all
0 6 s 6 t < T∣∣∣∣ ∫

Rd
ϕdµnt −

∫
Rd
ϕdµns

∣∣∣∣ =

∣∣∣∣ ∫ t

s

∫
Rd
Lan,bn,cnϕdµ

n
r dr

∣∣∣∣ 6 C(ϕ)|t− s|. (1.2.10)

Consequently, for fixed ϕ, the functions

[0, T ) 3 t 7→
∫
Rd
ϕdµnt =: fn(t), n ∈ N,

are uniformly bounded and equicontinuous, hence the Arzelá-Ascoli theorem implies
that every subsequence of (fn)n∈N contains a locally uniformly on [0, T ) converging

subsubsequence. Since fn converges L
d+3
d+2 ([Tk−1, T (1− k−1)]; dt)-weakly to

f(t) :=

∫
Rd
ϕdµt

8



1 Linear Fokker–Planck equations

for all k > 2 and since uniform and weak limits coincide, it follows that any two
subsubsequence limits coincide dt-a.s., hence pointwise (since they are continuous)
on (0, T ). Consequently, (fn)n∈N converges locally uniformly on (0, T ) to a limit
equal to f dt-a.s. For t = 0, the definition of νn entails µn0 → ν weakly in the sense
of measures, i.e. fn(0)→ f(0). The dt-exceptional set depends on ϕ and is denoted
by T(ϕ).

4. We are now going to prove that (µt)t∈[0,T ), µt = %(t, x)dx for t > 0 and

µ0 = ν, is a solution as in the assertion. For ϕ ∈ C∞c (Rd), we have, for k = k(ϕ),
La,b,cϕ ∈ L∞((0, T )× Uk; dtdx),

sup
n
|Lan,bn,cnϕ|L∞((0,T )×Uk;dtdx) 6 Ck,

and Lan,bn,cnϕ
n→∞−−−−→ La,b,cϕ in Lp((0, T )×Rd; dtdx) for every p > 1. Let t ∈ T(ϕ)c,

i.e. ∫
Rd
ϕdµnt

n→∞−−−−→
∫
Rd
ϕ%(t, x)dx =

∫
Rd
ϕdµt,

and let 0 < s < t < T . Then∣∣∣∣ ∫
Rd
ϕdµnt −

∫
Rd
ϕνn −

∫ t

s

∫
Rd
Lan,bn,cnϕdµ

n
r dr

∣∣∣∣ (1.2.11)

=

∣∣∣∣ ∫
Rd
ϕdµns −

∫
Rd
ϕdνn

∣∣∣∣ 6 C(ϕ)s,

where C(ϕ) is as in (1.2.10). Since

lim
n

∫ t

s

∫
Rd
Lan,bn,cnϕdµ

n
r dr =

∫ t

s

∫
Rd
La,b,cϕ%(r, x) dxdr,

letting first n→∞ and then s→ 0 in (1.2.11) yields∫
Rd
ϕ%(t, x) dx =

∫
Rd
ϕdν +

∫ t

0

∫
Rd
La,b,cϕ%(r, x) dxdr.

Therefore, µ = (µt)t∈[0,T ) = (%(t, x)dx)t∈[0,T ) is a solution to the Cauchy problem
(FPE)+(1.2.3) with initial datum ν.

5. It remains to prove the additional properties of µ claimed in the assertion.
Since each νn is a probability measure and due to (1.2.8) and cn 6 0, we find, for
every φ ∈ C∞c (Rd) with 0 6 φ 6 1 and t ∈ (0, T ),∫

Rd
φdµnt −

∫ t

0

∫
Rd
φcn dµns ds 6 1. (1.2.12)

Consider φN ∈ C∞c (Rd), 0 6 φN 6 1 such that φN = 1 on UN , and let t ∈⋂
N T(φN )c, i.e. ∫

Rd
φN dµ

n
t

n→∞−−−−→
∫
Rd
φN %(t, x)dx, ∀N ∈ N.

9
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Considering such φN and t in (1.2.12) and letting n→∞ yields∫
Rd
φN%(t, x) dx−

∫ t

0

∫
Rd
φNc %(s, x)dxds 6 1

(precisely: first replace 0 by ε > 0 and use the local weak convergence of %n to %,
then let ε↘ 0). Finally, letting N →∞, by Fatou’s lemma we conclude, for dt-a.e.
t ∈ (0, T ), ∫

Rd
%(t, x)dx−

∫ t

0

∫
Rd
c %(s, x)dxds 6 1 = ν(Rd).

This proves all remaining assertions.

1.2.2 Uniqueness of solutions

Next, we present some classical uniqueness results and an example of an ill-posed
FPE with smooth coefficients. For the rather long proofs of these results, we refer
to Chapter 9 of [9] and to the exercises. Let aij , bi, c : [0, T ] × Rd → R be Borel
maps and a = (aij)i,j6 symmetric nonnegative definite for all (t, x).

First, assume c = 0. The following result is classical.

Proposition 1.2.12. Assume a, b satisfy
∫ T

0
|a(t)|C2

b (Rd) + |b(t)|C2
b (Rd)dt < ∞. Then

(FPE) has a unique weakly continuous solution (µt)t∈[0,T ] with constant mass for

every initial datum ν ∈ M+
b . In particular, for ν ∈ P, there is a unique weakly

continuous probability solution with initial datum ν.

Now let c 6 0 and denote, for a subprobability measure ν, by SPν the set of
solutions µ = (µt)t∈[0,T ) to (FPE) with initial value ν such that

c ∈ L1((0, T )× Rd;µtdt), b ∈ L2((0, T )× U ;µtdt) ∀ balls U ⊆ Rd,

and such that (1.2.6) holds for dt-a.e. t ∈ (0, T ). In particular, for µ ∈ SPν , dt-a.e.
µt is a subprobability measure. The assumption on b is, for instance, fulfilled, if b
is bounded on each (0, T )× U .

We introduce the following assumptions on a.
(H1) For each ball U ⊆ Rd there is m(U),M(U) > 0 such that

a(t, x) > m(U) Id, |a(t, x)| 6M(U), ∀(t, x) ∈ (0, T )× U. (1.2.13)

(H2) For each ball U ⊆ Rd there is Λ(U) > 0 such that for all i, j 6 d

|aij(t, x)− aij(t, y)| 6 Λ(U)|x− y|, ∀x, y ∈ U, t ∈ (0, T ). (1.2.14)

Proposition 1.2.13. Suppose that (H1) and (H2) hold, b ∈ Lp((0, T ) × Rd), c ∈
L
p
2 (0, T )×Rd) for some p > d+2, and that there is a solution µ = (µt)t∈[0,T ) ∈ SPν

such that

|aij |
1 + |x|2

+
|bi|

1 + |x|
∈ L1((0, T )× Rd;µtdt). (1.2.15)

Then µ is the unique element in SPν .

10
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Proposition 1.2.14. Suppose that (H1) and (H2) hold, b ∈ Lp((0, T ) × Rd), c ∈
L
p
2 (0, T )×Rd) for some p > d+ 2. In addition, assume there is a positive function

V ∈ C2(Rd) with V (x)
|x|→∞−−−−→∞ such that

La,b,cV (t, x) 6 C + CV (x), ∀(t, x) ∈ (0, T )× Rd, (1.2.16)

for some C > 0. Then SPν contains at most one element.

The function V is called a Lyapunov function.

Remark 1.2.15. (i) In both cases one can prove that the unique element in SPν
satisfies (1.2.6) with equality. Hence, if c = 0, it is a constant mass solution.

(ii) If c = 0 and b is bounded on each (0, T ) × U , then the assertions of both
propositions mean that for every probability initial value ν, there is exactly
one, respectively at most one, probability solution to (FPE).

Another way to obtain uniqueness of probability solutions is via the corresponding
martingale problem, i.e. via the already indicated relation of FPEs to probability
theory. We will come back to this topic in due time.

Examples of nonuniqueness. Solutions to Fokker–Planck equations may be non-
unique, even for regular coefficients. A simple example in dimension d = 1 is

a = 0, b(x) = (3x)
2
3 . (1.2.17)

The ODE ẏ = b(y), y(0) = 0 has the smooth solutions y1(t) = 0 and y2(t) = t3

3 . It is
straightforward to check that (µit)t>0, µit = δyi(t), i ∈ {1, 2}, are weakly continuous
probability solutions with initial datum µ|t=0 = δ0 to (FPE), which in this case is
the continuity equation

∂tµ = −div(bµ), µ|t=0 = δ0.

Here the source of non-uniqueness is insufficient regularity of b and the degeneracy
of a. However, even for a = Id and for smooth b, examples of non-uniqueness exist.
Indeed there is the following result.

Proposition 1.2.16. There is b = (b1, . . . , b4) ∈ C∞(R4,R4) such that the FPE on
(0, T )× R4 with a = Id4×4 and b has several probability solutions.

Proof. See Section 9.2. in [9].

1.3 Superposition principle

In this chapter, we set c = 0 and consider the Fokker–Planck equation

∂tµt = L∗a,bµt
[

= ∂2
ij

(
aij(t, x)µt

)
− ∂i

(
bi(t, x)µt

)]

11
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(to which we simply refer as ”the FPE”), where for Borel coefficients a = (aij)i,j6d, b =
(bi)i6d on R+ × Rd we denote again

La,bϕ := aij∂
2
ijϕ+ bi∂iϕ.

On C+Rd := C(R+,Rd) with the topology of locally uniform convergence, we denote
by πt, t > 0, the canonical projections πtw := w(t). As usual, we assume a to be
pointwise symmetric nonnegative definite.

The martingale problem.

Definition 1.3.1. A solution to the martingale problem associated with a and b is a
Borel probability measure P ∈ P

(
C+Rd

)
such that∫

C+Rd

∫ T

0

|aij(s, πs)|+ |bi(s, πs)|dsdP <∞, ∀i, j 6 d, T > 0,

and for every ϕ ∈ C∞c (Rd) (equivalently: ϕ ∈ C2
b (Rd)) the real-valued stochastic

process Mϕ = (Mϕ
t )t>0 on C+Rd,

Mϕ
t := ϕ ◦ πt +

∫ t

0

(La,bϕ)(s, πs)ds,

is a P -martingale w.r.t. the filtration Ft := σ(πr, 0 6 r 6 t). The set of solutions
with initial condition P ◦ π−1

0 = ν is denoted by MPν(a, b).

With obvious modifications, the martingale problem can be posed on [s,∞) in-
stead of R+. In this case, the initial datum is a pair (s, ν) ∈ R+×P, and martingale
problem solutions are measures on C([s,∞),Rd). The set of martingale solutions
with initial condition (s, ν) is denoted by MPs,ν(a, b). The results of this section
hold for any initial time s. On a path space starting from time s, we denote for
t > s the canonical projection by πst .

A particularly useful property of the martingale problem is the stability of its
solutions w.r.t. to disintegration in the sense of the following lemma. For the
proof in the case of bounded coefficients, see [20, Thm.6.2.1]. The generalization to
unbounded coefficients follows by approximation.

Lemma 1.3.2. (i) Let ν ∈ P, s > 0, P ∈ MPs,ν(a, b) and let (Qx)x∈Rd ⊆
P(C([s,∞),Rd)) be the ν-a.s. unique family such that x 7→ Qx(A) is mea-
surable for all A ∈ B(C([s,∞),Rd)),

P (A) =

∫
Rd
Qx(A) ν(dx),

and Qx({w : w(s) = x}) = 1 (i.e. (Qx)x∈Rd is the disintegration family of P
w.r.t. πs). Then Qx ∈MPs,x(a, b) for ν-a.e. x ∈ Rd.

12
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(ii) Let ti > s, Y = (πst0 , . . . , π
s
tn) : C([s,∞),Rd) → (Rd)n+1, A = σ(Y ), P ∈

MPs,ν(a, b) and (Qw)w∈C([s,∞),Rd) be a regular conditional probability of P

w.r.t. A. Denote by Qtnw the restriction of Qw to B(C([tn,∞),Rd)), i.e.

Qtnw (A) := Qw(u ∈ C([s,∞),Rd |u[tn,∞) ∈ A),

for A ∈ B(C([tn,∞),Rd)), where u[tn,∞) denotes the restriction of u ∈ C+Rd
to C([tn,∞),Rd). Then there is a set A ∈ A, P (A) = 0, such that Qtnw ∈
MPtn,w(tn)(a, b) for all w ∈ Ac.
Moreover, if P 1, P 2 ∈ MPs,ν(a, b) such that P 1 = P 2 on A, then A can be
chosen such that P 1(A) = P 2(A) = 0.

The following standard result is one reason why the martingale problem is popular
in probability theory. For the proof, see [19].

Proposition 1.3.3. If X is a weak solution to the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, t > 0, (1.3.1)

where σ ∈ Rd×d such that a = 1
2σσ

T , then LX ∈MLX0
(a, b). Conversely, for every

ν ∈ P and P ∈MPν(a, b) there is a weak solution X to this SDE such that LX = P .

Remark 1.3.4. Recall that solutions to this SDE are said to be weakly unique, if for
any two weak solutions X and Y it holds

LX0 = LY0 =⇒ LX = LY .

Similarly, solutions are weakly unique for an initial datum ν ∈ P, if the previous
implication holds for all weak solutions with LX0 = LY0 = ν.

For the rest of the chapter, we simply refer to (1.3.1) as ”the SDE”, and to the
corresponding martingale problem as ”the martingale problem”. It is obvious how
to generalize the initial time of the SDE to any s > 0.

There is a wide literature on the martingale problem and, in particular, its con-
nection to Markov processes and probability theory, see for instance the classical
reference [20]. In this lecture, we only use the martingale problem as a tool, via the
previous proposition.

We have already seen in Section 1.1 that for every weak solution X to the SDE,
(LXt)t>0 is a weakly continuous probability solution to the FPE. By Proposition
1.3.3, equivalently we have:

Corollary 1.3.5. P ∈MPν(a, b) =⇒ (P ◦π−1
t )t>0 is a weakly continuous probability

solution to the FPE with initial datum ν, and all assumptions of Lemma 1.2.6 are
true.

The superposition principle. text
The main aim of this chapter is to prove the following theorem, the first cornerstone
of the lecture.

13
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Theorem 1.3.6 (Superposition principle). Let σij , bi : R+ × Rd → R, i, j 6 d, be
Borel. For every weakly continuous probability solution (µt)t>0 to the FPE with
coefficients a = (aij)i,j6d = 1

2σσ
T and b such that∫ T

0

∫
Rd
|aij |+ |bi| dµtdt <∞, ∀T > 0, i, j 6 d, (1.3.2)

there is a weak solution X to the SDE such that LXt = µt for all t > 0.

In particular, if µ0 = ν, then LX0 = ν.
This result is relatively new: It was iteratively proven by Ambrosio, Figalli

(Fields-medalist!) and Trevisan between 2004 and 2016, see [1, 11, 21].
Due to the equivalence of the SDE and the martingale problem, we may instead

prove that for (µt)t>0 as in the assertion there is P ∈MPµ0
(a, b) such that P ◦π−1

t =
µt for all t > 0.

Remark 1.3.7. (i) It should be remarked that there is no regularity assumption on
a and b (except measurability).

(ii) Assumption (1.3.2) can be generalized to∫ T

0

∫
Rd

|aij |+ |〈b, x〉|
1 + |x|2

dµtdt <∞, ∀T > 0, i, j 6 d, (1.3.3)

see [10], which is essentially sharp (〈·, ·〉 denotes the standard Euclidean inner
product).

For merely local in space integrability there are counterexamples to the asser-
tion of Theorem 1.3.6. For instance, |MPν(a, b)| 6 1 for every ν ∈ P, if
a(t, x) is strictly elliptic for every x and continuous in x uniformly in t > 0,
and a and b are locally bounded on R+ × Rd. But [8] contains an example of
such coefficients for which the FPE has several probability solutions for every
initial probability measure ν (which do not satisfy (1.3.3)).

(iii) Weak continuity and constant mass 1 of (µt)t>0 is necessary, since the one-
dimensional time marginals of any weak SDE solution are a weakly continuous
curve of probability measures. However, due to the following proposition, the
continuity assumption is no restriction.

(iv) Recall that, by Lemma 1.2.6 (ii), for any solution as in Theorem 1.3.6, (1.2.4)
and (1.2.5) hold for all ϕ ∈ C2

b (Rd).

Proposition 1.3.8. Let µ = (µt)t>0 be a solution to ∂tµt = L∗a,bµt with initial condi-

tion ν ∈ P such that aij , bi ∈ L1
loc([0,∞)× Rd;µtdt), with each µt is a nonnegative

finite Borel measure und ess supt>0 µt(Rd) < ∞ (ess supt>0 µt(Rd) denotes the in-

fimum of numbers c > 0 such that µt(Rd) 6 c for all but dt-negligible many t > 0).

(i) There is a unique vaguely continuous dt-version (µ̃t)t>0 (i.e. µt = µ̃t dt-a.s.),
and µ̃ also solves the FPE with initial datum ν.
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(ii) If, in addition, aij , bi ∈ L1([0, T ] × Rd;µtdt) for all T > 0, then µ̃ is a
probability solution and, hence, weakly continuous.

Proof. The second part of (i) follows from Remark 1.2.3 and the simple observation
that any two solutions from the same dt-equivalence class have the same initial
datum. (ii) follows from Exercise 1.3. First part of (i): Exercise 2.1.

The superposition principle allows to prove uniqueness of FPE-probability solu-
tions via weak uniqueness for the SDE:

Corollary 1.3.9. Let s > 0, ν ∈ P. If solutions to the martingale problem (the SDE)
with initial condition (s, ν) are (weakly) unique, then there is, up to dt-zero sets,
at most one probability solution to the FPE with initial condition (s, ν) such that
(1.3.2) holds (with s instead of 0).

Proof. Without loss of generality, let s = 0. Suppose µi = (µi)t>0, i ∈ {1, 2},
are two probability solutions to the FPE with initial datum ν, satisfying (1.3.2).
By Proposition 1.3.8, there exist weakly continuous dt-versions (µ̃it)t>0 (with initial

datum ν), and by the superposition principle, there exist weak SDE solutions X̃i

such that LX̃it
= µ̃it for all t > 0 and i ∈ {1, 2}. By assumption, µ̃1

t = µ̃2
t for all t

follows. Hence also µ1
t = µ2

t dt-a.s.

The reverse uniqueness implication is not true, i.e. uniqueness of FPE-probability
solutions for one initial datum ν does not imply weak uniqueness of SDE solutions
with initial distribution ν. Instead, one needs FPE-uniqueness for sufficiently many
initial times and measures:

Proposition 1.3.10. Suppose weakly continuous probability solutions (µt)t>s to the
FPE satisfying (1.3.2) (with s instead of 0) are unique for every initial condition
(s, δx) ∈ R+ × P, x ∈ Rd. Then solutions to the martingale problem (the SDE) are
(weakly) unique for every initial datum (s, δx), s > 0, x ∈ Rd.

Proof. Let x ∈ Rd. We have to prove

P 1, P 2 ∈MPx(a, b) =⇒ P 1 = P 2,

where the equality on the RHS is equivalent to

P 1 ◦ (πt0 . . . . , πtn)−1 = P 2 ◦ (πt0 . . . . , πtn)−1, ∀0 6 t0 < · · · < tn (1.3.4)

for all n ∈ N0. Then the assertion follows, since the proof for s 6= 0 is the same.
The assumption entails the previous equality for n = 0, since by Corollary 1.3.5 the
curves (P 1 ◦ π−1

t )t>0, (P
2 ◦ π−1

t )t>0 are weakly continuous probability solutions to
the FPE satisfying (1.3.2) with initial condition δx.

We proceed by induction. Assume (1.3.4) holds for n − 1 ∈ N. For arbitrary
fi : Rd → R measurable bounded, i ∈ {0, . . . , n} and 0 6 t0 < · · · < tn, we have to
show

EP 1

[
f0(πt0) · · · fn(πtn)

]
= EP 2

[
f0(πt0) · · · fn(πtn)

]
. (1.3.5)
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Let (Qiw)w∈C+Rd be a r.c.p. of P i w.r.t. σ(πt0 , . . . , πtn−1). By Lemma 1.3.2 (ii)

Q
i,tn−1
w ∈MPtn−1,w(tn−1)(a, b) for Pi-a.e. w. By the last part of the lemma and the

induction assumption, the exceptional set A such that the previous inclusion holds
for all w ∈ Ac can be chosen independently of i ∈ {1, 2}. Hence, by assumption, for
all w ∈ Ac ∩N c

2 , where N2, P2(N2) = 0, is such that

EQ2
w

[fn(πtn)] = EP2
[fn(πtn)|σ(πt0 , . . . , πtn−1

)], ∀w ∈ N c
2 ,

we have

E
Q

1,tn−1
w

[
fn(π

tn−1

tn )
]

= E
Q

2,tn−1
w

[
fn(π

tn−1

tn )
]

= EP2
[fn(πtn)|σ(πt0 , . . . , πtn−1

)](w),

which implies that for

H : C+Rd → R, H(w) = E
Q

1,tn−1
w

[
fn(π

tn−1

tn )
]
,

which is bounded σ(πt0 , . . . , πtn−1
)-measurable, we have

H = EP i
[
fn(πtn)|σ(πt0 , . . . , πtn−1

)
]
,

both P 1- and P 2-a.s. Now we can conclude, since the LHS and RHS of (1.3.5) equal
EP i

[
f0(πt0) · · · fn−1(πtn−1)H

]
, i = 1 and i = 2, respectively. But for i = 1 and

i = 2, these integral values are the same by the induction assumption, since the
integrand is σ(πt0 , . . . , πtn−1

)-measurable.

A natural question is whether the previous proposition implies uniqueness for all
initial data (s, ν) ∈ R+ × P. The answer is positive:

Proposition 1.3.11. Let s > 0 and assume |MPs,x(a, b)| 6 1 for all x ∈ Rd. Then
|MPs,ν(a, b)| 6 1 for all ν ∈ P.

Proof. Exercise 3.1.

Corollary 1.3.12. Under the assumption of Proposition 1.3.11, the FPE has at most
one weakly continuous probability solution satisfying (1.3.2) (with s instead of 0)
with initial condition (s, ν) for every probability measure ν and s > 0.

Proof. Let (s, ν) ∈ R+ × P. Proposition 1.3.11 yields |Ms,ν(a, b)| 6 1, and the
assertion follows from Corollary 1.3.9.

1.3.1 Deterministic special case

Here we consider the case a = 0, i.e. the FPE becomes the continuity equation

∂tµt = −div
(
bµt
)
, t ∈ (0,∞). (1.3.6)

In this case, we have the following characterization of solutions to the martingale
problem:

P ∈MPν(0, b) ⇐⇒ P ∈P(C+Rd) such that P (Cac(b)) = 1, P ◦ π−1
0 = ν,∫

C+Rd

∫ T

0

|b(t, w(t))|dtdP (w) <∞∀T > 0,
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where Cab(b) denotes the set of absolutely continuous maps y : [0,∞) → Rd such
that y′(t) = b(t, y(t)) dt-a.s. (i.e. the set of integral solutions to this ODE).

In this case, the superposition principle asserts: For any weakly continuous prob-

ability solution (µt)t>0 to (1.3.6) such that
∫ T

0

∫
Rd |b(t, x)|dµtdt < ∞ for all T > 0

there is a probability measure P on the set of integral solutions to the ODE corre-
sponding to b such that P ◦ π−1

t = µt, t > 0.
In particular, the existence of such a solution (µt)t>0 with initial datum ν yields

the existence of at least one integral solution to the ODE with initial datum x for
ν-a.e. x ∈ Rd. Conversely, if for ν-a.e. x there is at most one integral solution to the
ODE with initial datum x, then there is at most one weakly continuous probability
solution to the continuity equation with initial datum ν satisfying the previously
mentioned integrability condition.

In general, there may be many ODE solutions from the same initial value x and
the disintegration measures Qx of P with support on those ODE solutions starting
from x need not be Dirac measures, i.e. need not be concentrated on a single ODE
solution. This is the reason for the name superposition principle: The path measure
P may superpose many ODE solutions with the same initial value.

Analog statements hold for initial times s > 0.

1.3.2 Proof

We now prove Theorem 1.3.6, closely following Trevisan [21], restricting to the time
interval [0, 1] instead of R+. The latter case is a simple modification of the proof
below (the definition of solution to the FPE and the martingale problem on [0, 1] is
the same as on R+, with the obvious modifications). The idea is the following.

(1) Approximate a and b by sufficiently regular coefficients an and bn, consider
the corresponding FPEs with solutions µn for which the assertion is already
known, such that

µn → µ and (an, bn)→ (a, b)

in a suitable sense. This yields the existence of Pn ∈ MPµn0 (an, bn) with

Pn ◦ π−1
t = µnt .

(2) Prove tightness of (Pn)n∈N in P
(
C[0,1]Rd

)
in order to extract a weak limit

point P .

(3) Prove P ∈MPµ0
(a, b).

Remark 1.3.13. If µn → µ weakly (which will be the case in the proof below), then
P ◦ π−1

t = µt follows from the weak convergence Pn → P and Pn ◦ π−1
t = µnt .

First assume, writing a(t) = [x 7→ a(t, x)] and likewise for b,

(A1)

∫ 1

0

|a(t)|C2
b (Rd) + |b(t)|C2

b (Rd)dt <∞.

In this case, the superposition principle holds. Indeed, by the standard Picard–
Lindelöf theorem, under (A1) the SDE has a unique weak solution for any initial
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condition ν ∈ P. On the other hand, by Proposition 1.2.12, for any initial proba-
bility measure ν, there is at most one weakly continuous probability solution to the
FPE (by (A1), every such solution satisfies (1.3.2)). Hence, by Proposition 1.1.3,
such a solution exists and is necessarily the one-dimensional time marginal curve of
the unique SDE solution.

The generalization from this base case to the full assertion proceeds via several
steps: We verify the assertion under each of the following increasingly general as-
sumptions. Below we denote by U ⊆ Rd an arbitrary ball.

(A2)

∫ 1

0

sup
x
|a(t, x)|+ sup

x
|b(t, x)|dt <∞,

(A3)

∫ 1

0

|a(t)|L∞(U) + |b(t)|L∞(U)dt <∞ ∀U and (1.3.2) holds,

(A4)

∫ 1

0

∫
Rd
|a(t, x)|+ |b(t, x)|dµtdt <∞.

Each step proceeds via (1)-(3), and the main task in each step is to choose a suitable
approximations of the coefficients and the solution.

We first present the general ideas for (1)-(3) before applying them to each gener-
alization step. Let µ = (µt)t∈[0,1] be the solution from the assertion.

(1) Approximation .
(1).1 Image measures of smooth maps. Let g = (g1, . . . , gd) ∈ C2(Rd,Rd) have
uniformly bounded first- and second-order derivatives, and set

µg = (µgt )t∈[0,1] := (µt ◦ g−1)t∈[0,1].

Note that ϕ ◦ g ∈ C2
b (Rd) for ϕ ∈ C2

b (Rd) and

La,b(ϕ ◦ g) =

d∑
k=1

La,b(g
k)[(∂kϕ) ◦ g] +

d∑
k,l=1

aij∂ig
k∂jg

l[(∂2
klϕ) ◦ g].

For any t ∈ [0, 1] and k, l 6 d, let agkl(t), b
g
k(t) : Rd → R be Borel maps such that

Eµt [aij(t)∂igk∂jgl|σ(g)] = agkl(t) ◦ g, Eµt [La,bgk(t)|σ(g)] = bgk(t) ◦ g, µt − a.s.

(Einstein summation convention is used for repeated indices). agkl(t) and bgk(t) exist
and are uniquely determined µt-a.s. by the factorization lemma. Note that agkl(t)
and bgk(t) are the density of [(aij(t)∂ig

k∂jg
l)µt] ◦ g−1 and [(La,b(g

k)µt] ◦ g−1 w.r.t.
µgt , respectively. The curve µg is a weakly continuous probability solution to

∂tνt = L∗ag,bgνt, t ∈ [0, 1].

Moreover, by definition we have for all t ∈ [0, 1] and p ∈ [1,∞]

|agkl(t)|Lp(Rd;µgt ) 6 C|a(t)|Lp(Rd;µt), |bgk(t)|Lp(Rd;µgt ) 6 C||a(t)|+ |b(t)||Lp(Rd;µt)
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1 Linear Fokker–Planck equations

(1.3.7)

by the contraction property of conditional expectations, where C > 0 depends only
on the L∞-norm of the first- and second-order derivatives of g.

(1).2 Mollification by convolutions. Let % : Rd → R, % > 0, be a smooth probability
density (w.r.t. dx), and set µ∗% = (µt∗%)t∈[0,1], i.e.

∫
Rd f d(µt∗%) :=

∫
Rd(f ∗%) dµt.

Since ϕ ∗ % ∈ C2
b (Rd) for ϕ ∈ C2

b (Rd) and

La,b(ϕ ∗ %) = bi(∂iϕ) ∗ %+ aij(∂
2
ijf) ∗ %,

by defining

a%ij(t, x) :=
d
(
(aij(t)µt) ∗ %

)
d(µt ∗ %)

(x), b%i (t, x) :=
d
(
(bi(t)µt) ∗ %

)
d(µt ∗ %)

(x),

(well-defined by Lemma 1.3.14) we find that µ ∗ % is a weakly continuous curve of
probability measures and solves the FPE

∂tνt = L∗a%,b%νt, t > 0.

The following lemma can be found as Lemma A.1 in [21]. Here Mb denotes the set
of signed Borel measures on Rd with finite total variation, and we denote by Di%
the collection of i-th partial derivatives of % (i.e. D1% = ∇%; D2% is the Hessian of
%, etc.).

Lemma 1.3.14. Let % as above also satisfy |Di%| 6 C% pointwise for i ∈ {1, . . . , k}
for some C > 0 and k ∈ N, and let η1 ∈ M+

b , η2 ∈ Mb with η2 = hη1, where
h : Rd → R. Then η2 ∗ % has a density h% w.r.t. η1 ∗ %, h% has a Ck-version and

|h%|Lp(Rd;η1∗%) 6 |h|Lp(Rd;η1), ∀p ∈ [1,∞].

Morevoer, for every convex map Θ : R→ R+∫
Rd

Θ(|h%|)d(η1 ∗ %) 6
∫
Rd

Θ(|h|) dη1. (1.3.8)

We will apply the lemma for η1 = µt, η
2 = aij(t)µt, h = aij(t) and h% = a%ij(t),

and, similarly, for bi and b%i .

(2) Tightness ..
Recall: A sequence of Borel probability measures (µn)n∈N on a metric space S is
called tight, if for every ε > 0, there is a compact set K ⊆ S such that µn(K) > 1−ε
for all n ∈ N. If (µn)n∈N is tight, it contains a weakly converging subsequence. A
sufficient criterion for tightness is the existence of a coercive function f : S → R+

(i.e. {f 6 c} is compact for all c > 0) such that

sup
n∈N

∫
S

f dµn <∞.

See also Exercise 4.1. For the rest of this section, for P ∈ P(C[0,1]Rd), we sometimes

write Pt := P ◦ π−1
t . We need the following result, see [21, Thm.A.2, Cor.A.5].
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Proposition 1.3.15. Let θ,Θ1,Θ2 : R+ → R+ be functions such that Θi, i ∈ {1, 2},
are convex with

lim
x→∞

θ(x) = lim
x→∞

Θi(x)

x
=∞, i ∈ {1, 2}.

Then there exists a coercive map Ψ : C[0,1]R1 → R+ ∪ {∞} such that for all Borel

maps aij , bi on [0, 1]×Rd such that a = (aij)i,j6d is pointwise nonnegative definite
and symmetric, and every P ∈MPP0

(a, b), we have

EP [Ψ(f◦π)] 6
∫
Rd
θ(|f |) dP0+

∫ 1

0

Θ1

(
|La,bf |

)
+Θ2

(
aij∂if∂jf

)
dPtdt, ∀f ∈ C2

b (Rd).

(1.3.9)

Here we use the notation f ◦ π : C[0,1]Rd → C[0,1]R1, f ◦ π(w) = [t 7→ f(πt(w))].

Note that the functions θ, Θi, i ∈ {1, 2}, and Ψ are independent of a and b. In
principle, both sides of the inequality may equal +∞. If for our sequence of FPE-
solutions µn for approximate coefficients an, bn, we can find θ,Θi, i ∈ {1, 2} such
that the RHS of (1.3.9) is finite and bounded uniformly in n for the corresponding
martingale solutions Pn, then (1.3.9) provides a criterion to prove tightness of
(Pn)n∈N.

(3) Limit ...
Here we assume (Pn)n∈N obtained in part (1) has a weak limit point P , and we
prove P ∈ MPP0(a, b). The latter holds if and only if: for all s, t ∈ [0, 1], s 6 t,
ϕ ∈ C2

b , |ϕ|C2
b
6 1, and h : C[0,1]Rd → R continuous, bounded and Fs-measurable

it holds∫
C[0,1]Rd

h

ï
ϕ ◦ πt − ϕ ◦ πs −

∫ t

s

La,bϕ(r, πr)dr

ò
dP = 0. (1.3.10)

This identity holds for Pn, an and bn instead of P, a and b, hence by the weak
convergence Pn → P it remains to prove

∫
C[0,1]Rd

h

ï ∫ t

s

Lan,bnϕ(r, πr)dr

ò
dPn−

∫
C[0,1]Rd

h

ï ∫ t

s

La,bϕ(r, πr)dr

ò
dP

n→∞−−−−→ 0.

(1.3.11)

We now prove this convergence for both types of approximations from step (1).

(3).1 Image measures For each n ∈ N, let gn satisfy the assumptions of g in

(1).1 and, in addition, gn(x) = x on Bn(0), D1gn
n→∞−−−−→ 1d×d (the unit matrix),

D2gn
n→∞−−−−→ 0 and |Dign(x)| 6 C for all i ∈ {1, 2}, n ∈ N and x ∈ Rd. Denote

µn := µgn , where the latter is defined as in (1).1 above.
Let L̄ denote any operator of type

L̄ = āij∂
2
ij + b̄i∂i
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for continuous (in (t, x)) and compactly supported (in x) coefficients āij and b̄i,
i, j 6 d. We subtract from the LHS of (1.3.11) the term∫

C[0,1]Rd
h

ï ∫ t

s

L̄ϕ(r, πr)dr

ò
dPn −

∫
C[0,1]Rd

h

ï ∫ t

s

L̄ϕ(r, πr)dr

ò
dP, (1.3.12)

and note that this difference vanishes as n→∞ by the weak convergence of Pn →
P . Consequently, the lim supn of the absolute value of the LHS of (1.3.11) is not
affected by first subtracting this difference term before taking absolute value and
lim supn. So, we estimate the lim supn of the absolute value of the LHS of (1.3.11),
up to a multiplicative constant depending only on h, by

lim sup
n

∫ t

s

∫
Rd
|Lan,bnϕ− L̄ϕ|dµnr dr +

∫ t

s

∫
Rd
|La,bϕ− L̄ϕ|dµrdr. (1.3.13)

By definition of an, bn and µn, the first summand of the previous line is equal to∫ t

s

∫
Rd
|Eµr [La,b(ϕ ◦ gn)|σ(gn)]− L̄ϕ ◦ gn|dµrdr

=

∫ t

s

∫
Rd
|Eµr [La,b(ϕ ◦ gn)− L̄ϕ ◦ gn|σ(gn)]dµrdr

6
∫ t

s

∫
Rd
|La,b(ϕ ◦ gn)− L̄ϕ ◦ gn|dµrdr

6
∫ t

s

∫
Rd

d∑
k,l=1

|aij∂igkn∂jgln − ākl ◦ gn|+
d∑
k=1

|La,b(gkn)− b̄k ◦ gn
∣∣dµrdr,

where for the equality we used that L̄ϕ◦gn is σ(gn)-measurable, the first inequality
is due to the L1-contraction property of conditional expectations, and the second
inequality is obtained by writing the previous line explicitly and using the estimate
|ϕ|C2

b
6 1.

Using the convergence properties of gn and its first- and second-order derivatives
specified above and taking lim supn of the RHS gives the estimate

lim sup
n

∫ t

s

∫
Rd
|Lan,bnϕ− L̄ϕ|dµnr dr 6

∫ t

s

∫
Rd

d∑
i,j=1

|aij − āij |+
d∑
i=1

|bi − b̄i| dµrdr.

Hence, taking into account (1.3.13), altogether the lim supn of the LHS of (1.3.11)
is bounded above by

2C

∫ t

s

∫
Rd

d∑
i,j=1

|aij − āij |+
d∑
i=1

|bi − b̄i| dµrdr.

Since āij , b̄ij : [0, 1]× Rd → R were arbitrary continuous and compactly supported
(in x ∈ Rd) maps, and since the class of such maps is dense in L1((s, t)×Rd; ζ) for
every locally finite Borel measure ζ on [0, 1] × Rd, we can make the previous sum
arbitrary small and, hence, conclude (1.3.11) (here ζ = µtdt).
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(3).2 Mollifications ...
Let (%n)n∈N be a sequence of smooth probability densities w.r.t. dx such that

%n(x)dx
n→∞−−−−→ δ0 weakly. Then the argument is similar to the previous case.

Details are left to the reader, or see [21].

Proof of Theorem 1.3.6 ...
Now we apply (1)-(3) to coefficients satisfying (A2) to deduce the assertion from
the validity of the assertion for coefficients satisfying (A1). Then, one assumes (A3)
and, via (1)-(3), proves the assertion in this case, relying on the validity in the case
(A2) proven before. Finally, one proceeds similarly under the general assumption,
i.e. (A4), by relying on(A3). In each step, one has to make fitting choices along
(1)-(3).

Under assumption (A2).
(1). Let ζ(x) := C exp(−

√
1 + |x|2), where C > 0 such that |ζ|L1 = 1, and set

%n(x) := ndζ(nx), n ∈ N. Then |Di%n| 6 cn2%n, i ∈ {1, 2} for some c > 0, and

%n(x)dx
n→∞−−−−→ δ0 weakly. Set µn := µ ∗ %n, and note µnt

n→∞−−−−→ µt weakly for all
t ∈ [0, 1]. By (1).2, µn is a weakly continuous probability solution for the FPE with
coefficients an := a%n and bn := b%n , defined as in (1).2 with %n in place of %. By
Lemma 1.3.14, we have for all p > 1 and t ∈ [0, 1]

|anij(t)|Lp(Rd;µnt ) 6 |a(t)|Lp(Rd;µt).

An analog estimate holds for bni , i 6 d.
Since anij and bni satisfy (A1), there is a family (Pn)n∈N, Pn ∈ MPµn0 (an, bn),

such that Pnt = µnt for all t ∈ [0, 1].
(2). Since the sequence (µn0 )n∈N converges weakly to µ0, it is tight, and thus

there is an increasing function θ : R+ → R+ with limx→∞ θ(x) = ∞ such that
supn

∫
Rd θ(|x|) dµ

n
0 6 1 (cf. Exercise 4.1). By (A2) and the de la Vallée Poussin

criterion, there is a nondecreasing, convex map Θ : R+ → R+ with limx→∞
Θ(x)
x =

∞ such that ∫ 1

0

Θ
(

sup
x
|a(t, x)|

)
+ Θ

(
sup
x
|b(t, x)|

)
dt <∞.

For k ∈ {1, . . . , d}, denote by xk : Rd → R the map x = (x1, . . . , xd) 7→ xk. Apply
Proposition (1.3.15) with θ, Θ1 = Θ2 = Θ, f = xkχR, k 6 d, where χR : Rd → [0, 1]
denotes a standard cutoff function, equal to 1 on BR(0), R > 0, to obtain the
existence of a coercive (hence lower semicontinuous) map Ψ such that

EPn [Ψ(xkχR ◦ π)]

6
∫
Rd
θ(|xkχR|)dµn0 +

∫ 1

0

Θ
(
|Lan,bnxkχR|

)
+ Θ

(
anij∂i(xkχR)∂j(xkχR)

)
dµnt dt.

Note xkχR
R→∞−−−−→ xk, |xkχR| 6 |xk|, ∂i(xkχR) is bounded uniformly in R > 0 and

∂2
ij(xkχR) converges to 0 pointwise as R→∞. Hence, the lower semicontinuity of
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Ψ, the monotonicity of θ, Fatou’s lemma and dominated convergence imply

EPn [Ψ(xk ◦ π)] 6
∫
Rd
θ(|xk|)dµn0 +

∫ 1

0

∫
Rd

Θ
(
bnk (t)

)
+ Θ

(
ankk(t)

)
dµnt dt.

By construction of θ and (1.3.8) the RHS is bounded above by

1+

∫ 1

0

∫
Rd

Θ
(
|bk(t)|

)
+Θ
(
|akk(t)|

)
dµtdt 6 1+

∫ t

0

Θ
(

sup
x
|b(t, x)|

)
+Θ
(

sup
x
|a(t, x)|

)
dt <∞.

Since w 7→
∑d
k=1 Ψ(xk◦w) is coercive on C[0,1]Rd (Exercise 5.2), we obtain tightness

of (Pn)n∈N.

(3). Follows from (3).2 above. Remark 1.3.13 concludes this part of the proof.

Under assumption (A3). Proceed similarly as in the previous case, but use im-
age measures instead of mollifications to approximate a and b. Steps (2) and (3)
follow similarly as in the previous case.

Under assumption (A4). Similarly to the previous cases, approximate a and b
by convolutions. For the detailed arguments of the previous two cases, please see
[21, p.38,39].

23



2 Connection to Markov processes

There is vast literature on the theory of Markov processes and their applications.
A very short list of standard, mostly rather recent, references (in no particular
order), including material on discrete time Markov processes (usually called Markov
chains) is: [Stroock2014], [LeGall2016], [Liggett2010], [Eberle2010] (lecture notes),
[Kirkwood2015], [Wentzell81], [GikhmanSkorokhod04].

2.1 Brief repetition of Markov processes

Let (S, S) be a measurable space. A map Λ : R+ ×R+ ×M+
b (S)→M+

b (S) has the
flow property, if

Λ(s, t, ζ) = Λ
(
r, t,Λ(s, r, ζ)

)
, ∀0 6 s 6 r 6 t, ζ ∈M+

b (S). (2.1.1)

Likewise, Λ has the flow property in M ⊂M+
b (S), if Λ(s, t,M) ⊆M for all 0 6 s 6 t,

and (2.1.1) holds for all ζ ∈M.

Definition 2.1.1. A tuple (Ω,F, (Xt)t>0, (Px)x∈S), consisting of a measurable space
(Ω,F), an S-valued stochastic process X = (Xt)t>0 on Ω and a family (Px)x∈S ⊆
P(Ω) is a Markov process, if

(i) x 7→ Px(Γ) is S−measurable for all Γ ∈ F,

(ii) there is a filtration (Ft)t>0 on (Ω,F) such that each Xt is Ft-measurable and

Px(Xt+s ∈ B|Fs) = PXs(Xt ∈ B) Px−a.s. ∀s, t > 0, B ∈ S, x ∈ S. (2.1.2)

A Markov process is called normal, if Px(X0 = x) = 1 for all x ∈ S.

Without further mentioning, we always consider normal Markov processes.

Remark 2.1.2. If (ii) is true for (F̂t)t>0, and (Ft)t>0 is such that Ft ⊆ F̂t for all
0 6 t, then (2.1.2) holds with (Ft)t>0, if (Xt)t>0 is (Ft)t>0-adapted.

The generic framework for Markov processes with continuous sample paths is the
canonical model :

Example 2.1.3 (Canonical model). Ω = C(R+, S), πt : Ω → S, πt(w) = w(t),
F = σ(πt, t > 0), Ft = σ(πr, 0 6 r 6 t), Xt = πt.

Px is often given as a family of solution laws to an SDE (equivalently: as a family
of solutions to the corresponding martingale problem), and then the Markov process
is normal if and only if Px has initial condition δx. Every Markov process of this
type can be modeled on the canonical model.
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2 Connection to Markov processes

(2.1.2) is the Markov property. An intuitive interpretation, in particular for nor-
mal Markov processes, is that (Px)x∈S models a random memoryless evolution in
time on S, and Px is the law of the evolution trajectories originated from x. Another
succinct description of (2.1.2) is:

”The past (of the process X with law Px) is independent of the future given the
present.”

The ”future” is the event {Xt+s ∈ B}, the past is Fs, i.e. the information available
at time s, and the present is the random state Xs at time s.

Markovian semigroups. A Markovian transition function on S is a family of mea-
surable kernels (pt)t>0, pt : S × S→ [0, 1] such that

(i) pt(x, S) = 1, ∀t > 0, x ∈ S,

(ii) ptps = pt+s, which means∫
S

ps(y,A) pt(x, dy) = pt+s(x,A), ∀x ∈ S,A ∈ S, t, s > 0. (2.1.3)

(2.1.3) are the Chapman–Kolmogorov equations.

Lemma 2.1.4. Let (pt)t>0 be a Markovian transition function and define Λ via

Λ(s, t, ζ) :=

∫
S

pt−s(x, dy) ζ(dx) ∈M+
b , i.e. Λ(s, t, ζ)(A) =

∫
S

pt−s(x,A) ζ(dx).

Then Λ satisfies the flow property (2.1.1).

Proof. Simple exercise.

In general, the converse is not true. We recall the following well-known results
without proofs.

Proposition 2.1.5. (i) Let (Ω,F, (Xt)t>0, (Px)x∈S) be a Markov process. Then

(pt)t>0, pt(x,A) := Px(Xt ∈ A),

is a Markovian transition function. Moreover, for all f : Sn+1 → R bounded
and Sn+1-measurable and all 0 6 t0 6 . . . 6 tn

Ex
[
f(Xt0 , . . . , Xtn)

]
(2.1.4)

=

∫
S

· · ·
∫
S

Å∫
S

f(x0, . . . , xn) ptn−tn−1
(xn−1,dxn)

ã
ptn−1−tn−2

(xn−2, dxn−1) . . . pt0(x, dx0).

(ii) If (S, S) is Polish, then for every Markovian transition function (pt)t>0 there
is a Markov process with (2.1.4).
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2 Connection to Markov processes

For a normal Markov process, the corresponding Markovian transition function
satisfies p0(x, ·) = δx(·) for all x ∈ S.

For a Markov process and any ν ∈ P(S), one sets Pν :=
∫
S
Px ν(dx) and some-

times considers (Pν)ν∈P(S) instead of (Px)x∈S . It is straightforward to check

Eν
[
f(Xt0 , . . . , Xtn)

]
=

∫
S

∫
S

· · ·
∫
S

Å∫
S

f(x0, . . . , xn) ptn−tn−1
(xn−1,dxn)

ã
ptn−1−tn−2

(xn−2, dxn−1) . . . pt0(x, dx0) ν(dx).

The essence of the previous proposition is that the measures Pν of a Markov pro-
cess are uniquely determined by its transition function and initial datum. Succinctly
written, the above formula reads

Pν ◦ (πt0 , . . . , πtn)−1 = νpt0pt1−t0pt2−t1pt3−t2 · · · ptn−tn−1
.

Markovian (dual) semigroups and generator. Denote by S+
b the set of bounded

S-measurable maps g : S → R+. For a Markovian transition function (pt)t>0,
define

Pt : S+
b → S+

b , (Ptf)(x) :=

∫
S

f(y) pt(x, dy).

(Pt)t>0 is called the Markovian semigroup associated with (pt)t>0. Pt is simply the
canonical extension from {1A |A ∈ S} to S+

b of the map pt : 1A 7→ [x 7→ pt(x,A)].
Since we only consider normal Markov processes, we always have P0 = Id.

The dual semigroup (P ∗t )t>0 consists of the maps

P ∗t : P(S)→ P(S), (P ∗t ν)(A) :=

∫
S

pt(x,A) ν(dx),

i.e. in particular P ∗t δx = pt(x, ·). By Lemma 2.1.4, (s, t, ζ) 7→ P ∗t−sζ has the flow
property in P(S).

Definition 2.1.6. The generator of a normal Markov process with Markovian semi-
group (Pt)t>0 is the linear, typically unbounded, operator (A,D(A)),

(Af)(x) := lim
h→0

Phf(x)− f(x)

h
,

where the domain D(A) consists of those measurable maps f : S → R for which
the limit on the RHS exists for every x ∈ S, possibly restricted to subspaces such
as Cb(S) or Lp(S;µ) for a measure µ on S.

In other words, Af is the (pointwise in x) right-derivative of t 7→ Ptf in t = 0.

Time-inhomogeneous Markov processes. So far (with the exception of the flow
property), in this chapter we considered the time-homogeneous setting: the mea-
sures Px in Definition 2.1.1 do not depend on a time parameter s, considered as
the ”starting time” of the corresponding process, and the corresponding Markovian
transition function (pt)t>0 is a one-parameter family of kernels. Definition 2.1.1
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can be extended to the time-inhomogeneous case. For the sake of simplicity, we
only consider this generalization in the canonical model as follows.

Let, for s > 0, Ωs = C([s,∞), S), Fs = σ(πsr , s 6 r), Fs,t = σ(πsr , r ∈ [s, t]),
where πst : Ωs → S, πst (w) = w(t).

Definition 2.1.7. A family (Ps,x)s∈R+,x∈S of Borel probability measures Ps,x ∈ P(Ωs)
is a time-inhomogeneous Markov process, if

(i) x 7→ Ps,x(Γ) is S-measurable for all Γ ∈ Fs and s > 0,

(ii) the time-inhomogeneous Markov property holds, i.e.

Ps,x
(
πst ∈ B|Fs,r

)
= Pr,πsr

(
πrt ∈ B

)
Ps,x−a.s., ∀0 6 s 6 r 6 t, x ∈ S,B ∈ S.

Again, we restrict to the normal case, i.e. Ps,x(πss = x) = 1. The assertions of
Proposition 2.1.5 have time-inhomogeneous analogs.

Similar to the time-homogeneous case, a family of measurable probability kernels
(ps,t)s6t, ps,t : S × S→ [0, 1] such that ps,t = ps,rpr,t for all 0 6 s 6 r 6 t is called
time-inhomogeneous Markovian transition function. For a time-inhomogeneous
normal Markov process (Ps,x)s∈R+,x∈S , we have ps,s(x, ·) = δx(·) and the family
(ps,t)s6t, ps,t(x,A) := Ps,x(πst ∈ A), is a time-inhomogeneous Markovian transition
function, which extends to the Markovian semigroup

Ps,t : S+
b → S+

b , (Ps,tf)(x) :=

∫
S

f(y) ps,t(x, dy).

The dual semigroup is (P ∗s,t)s6t,

P ∗s,t : P(Ωs)→ P(Ωs), (P ∗s,tν)(A) :=

∫
S

ps,t(x,A) ν(dx).

A time-inhomogeneous normal Markov process has the generators As, defined by

(Asf)(x) := lim
h→0

Ps,s+hf(x)− f(x)

h
,

with domain (which may depend on s) D(As), consisting of those functions f : S →
R for which the limit on the RHS is defined for every x (with the same possible
restrictions as in the time-inhomogeneous case).

It is left as a simple exercise to prove: Definition 2.1.7 extends Definition 2.1.1,
and the time-inhomogeneous version of Lemma 2.1.4 is true for (ps,t)s6t, ps,t(x,A) =
Ps,x(πst ∈ A), as well, i.e. (s, t, ζ) 7→ P ∗s,tζ has the flow property in P(S).

2.2 Fokker–Planck equations and Markov processes

Let S = Rd. We now briefly explore the relation between solutions to Fokker–
Planck equations and Markov processes. Consider locally bounded Borel coefficients
a = (aij)i,j6d, b = (bi)i6d on R+×Rd such that a(t, x) is symmetric and nonnegative
definite for all (t, x) ∈ R+×Rd, and the associated Fokker–Planck equation (FPE).

For the following result, we omit details on the assumptions on the coefficients.
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2 Connection to Markov processes

Proposition 2.2.1. Suppose (Ps,x)s∈R+,x∈Rd is a time-inhomogeneous Markov process
with generator

(Asf)(x) = aij(s, x)∂2
ijf(x) + bi(s, x)∂if(x), C∞c (Rd) ⊆ D(As) ∀s ∈ R+.

Assume sufficient regularity for a and b. Then t 7→ µs,xt := P ∗s,tδx is a weakly
continuous probability solution to the FPE

∂tµt = L∗a,bµt

on (s,∞) with initial condition µs = δx.

In the context of Markov processes, the FPE is also called Kolmogorov forward
equation.

Sketch of proof. Without loss of generality let s = 0 and set P ∗0,tδx =: µxt . For

f ∈ C∞c (Rd) and t > 0, we have

1

h

Å∫
Rd
f dµxt+h −

∫
Rd

dµxt

ã
= P0,t

Å
1

h

(
Pt,t+hf(x)− f(x))

ã
. (2.2.1)

Thus, for h→ 0 we have

lim
h→0

1

h

Å∫
Rd
f dµxt+h−

∫
Rd

dµxt

ã
= P0,t(Atf)(x) =

∫
Rd
La,bf(t, y) dµxt (y), (2.2.2)

i.e. d+

dt

∫
Rd f dµ

x
t =

∫
Rd La,bf(t, y) dµxt (y). It remains to justify that also the left

derivative of
∫
Rd f dµ

x
t exists and coincides with the RHS dt-a.s. Finally, integrating

over any interval [0, T ] gives the result.

Now assume the FPE is well-posed among probability solutions with global spatial
integrability. More precisely, assume:

(A1) For every (s, x) ∈ R+×Rd, there is a unique weakly continuous probability
solution µs,x = (µs,xt )t>s to (FPE) with initial condition µs,xs = δx such that aij , bi ∈
L1
(
[0, T ]× Rd;µs,xt dt

)
.

Theorem 2.2.2. Under assumption (A1), there is a unique time-inhomogeneous
Markov process (Ps,x)s>0,x∈Rd with Markovian transition function ps,t(x,A) = µs,xt (A),
and Ps,x is the law of the unique weak solution to the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, Xs = x, t > s. (2.2.3)

As usual, σ in (2.2.3) is defined by a = 1
2σσ

T , and B is a d-dimensional standard
Brownian motion.

Proof. The uniqueness of the Markov process is clear, consider for instance the time-
inhomogeneous version of (2.1.4). (A1) allows to apply Theorem 1.3.6 in order to
obtain a family (Ps,x)s∈R+,x∈Rd such that Ps,x is the law of a weak solution to (2.2.3)
with one-dimensional time marginals (µs,xt )t>s. By Proposition 1.3.10, each Ps,x is
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2 Connection to Markov processes

the unique solution law with initial datum (s, x). To prove the Markov property,
i.e. Definition 2.1.7 (ii), first note that for ω ∈ Ωs the path measure Pr,πsr(ω) is the

unique element in MPr,δπsr(ω)
(a, b). Denote by (Q

(s,x),r
ω )ω∈Ωs a r.c.p. of Ps,x w.r.t.

Fs,r. We use the fact that the assertion of Lemma 1.3.2 (ii) remains true for any
choice A = σ(πsu, s 6 u 6 t). We choose A = Fs,r and obtain that the restriction

Q
(s,x),r
ω,>r of Q

(s,x),r
ω to B(Ωr) is an element of MPr,δπsr(ω)

(a, b), for Ps,x-a.e. ω. Thus

Q
(s,x),r
ω,>r = Pr,πsr(ω), Ps,x-a.s.

Since Ps,x(C|Fs,r)(ω) = Q
(s,x),r
ω (C), Ps,x-a.s., for each C ∈ B(Ωs) (with zero set

depending on C), we obtain, letting C = {πst ∈ B} for any t > r > s and B ∈ B(Rd):

Ps,x(πst ∈ B|Fs,r)(ω) = Q(s,x),r
ω (πst ∈ B) = Q

(s,x),r
ω,>r (πrt ∈ B) = Pr,πsr(ω)(π

r
t ∈ B),

Ps,x-a.s.

Remark 2.2.3. If a and b are continuous in x and continuous in t locally uniformly
in x, then for the generator (As)s>0 of the time-inhomogeneous Markov process of
the previous proposition one has C2

c (Rd) ⊆ D(As) for all s > 0 and

Asf(x) = aij(s, x)∂2
ijf(x) + bi(s, x)∂if(x), ∀f ∈ C2

c (Rd).

The assertion can be generalized to less regular coefficients, but the proof is more
involved.
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3 Nonlinear Fokker–Planck equations

In this chapter we study nonlinear Fokker–Planck equations which, in contrast to
linear ones, consist of coefficients depending on the solution itself. This renders the
theory of existence and uniqueness of such equations considerably more difficult.
On the other hand, the nonlinearity allows to cover large classes of very important
nonlinear PDEs. Also the connection to probability theory gains a new compo-
nent, namely the theory of interacting particle systems. Nonlinear Fokker–Planck
equations belong to the most widely used equations in statistical mechanics and
physics, see for instance [12]. A standard reference for the nonlinear case is [9] and
the references therein. For more recent results, some references will be mentioned
throughout the chapter.

3.1 Definition, existence, uniqueness

Let aij , bi : R+×M×Rd → R, i, j 6 d, such that a(t, ζ, x) is pointwise nonnegative
definite and symmetric for all (t, ζ, x) ∈ R+×M+

b ×Rd, where M is a subset of M+
b

(for instance, the set of measures absolutely continuous w.r.t. dx). We consider
nonlinear Fokker–Planck equations of type

∂tµt = ∂2
ij(aij(t, µt, x)µt)− ∂i(bi(t, µt, x)µt), t > 0 (3.1.1)

(simply considered as ”the NLFPE” in the sequel). For µ ∈ M, we set, for ϕ ∈
C2(Rd),

La,b,µϕ(t, x) = aij(t, µ, x)∂2
ijϕ(x) + bi(t, µ, x)∂iϕ(x).

As before, in general solutions are measure-valued curves t 7→ µt. One can consider
cases where a(t) and b(t) depend on

(
(µt)t>0, x

)
instead of (µt, x); also the case of

locally finite signed measures can be considered. We will, however, restrict ourselves
to the case presented above.

Examples. Global dependence. The prototype of nonlinear coefficients with global
measure dependence is

b(t, µ, x) =

∫
Rd
K(t, x, y)dµ(y), K : R+ × Rd × Rd → Rd, (3.1.2)

and likewise for a. Specifically, a common case is K(t, x, y) = ∇k(t, x − y) for
k : R+ × Rd → R. k is called a potential.

Local dependence. A very important class is given by coefficients of type

aij(t, µ, x) = ãij

Å
t,
dµ

dx
(x), x

ã
, bi(t, µ, x) = b̃i

Å
t,
dµ

dx
(x), x

ã
, i, j 6 d, (3.1.3)
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3 Nonlinear Fokker–Planck equations

where ãij , b̃i : R+ × R × Rd → R and dµ
dx (x) denotes the density of µ w.r.t. dx,

evaluated at x. Without further mentioning, we always consider the version of
dµ
dx which is 0 on those x ∈ Rd for which limr→0 dx(Br(0))−1µ(Br(x)) does not
exist in R. By Lebesgue’s differentiation theorem, the set of such x is a dx-zero set.
Then (µ, y) 7→ dµ

dx (y) is B(M+
b,�)⊗B(Rd)-measurable by [13, Sect.4.2.], where M+

b,�
denotes the subset of M+

b of measures absolutely continuous w.r.t. dx, equipped
with the topology of weak convergence of measures. The coefficients are defined on
R+×M+

b,�×Rd. This case is often called Nemytskii-case, and a and b as in (3.1.3)
are of Nemytskii-type.

In the Nemytskii-case, the NLFPE is often posed in density form

∂tu(t, x) = ∂2
ij

(
ãij(t, u(t, x), x)u(t)

)
− div

(
b̃(t, u(t, x), x)u(t)

)
,

i.e. in comparison with the general measure-valued formulation µt = u(t, x)dx this
equation is a (function-valued) PDE for the density (t, x) 7→ u(t, x).

Note that even if r 7→ ãij(t, r, x) is continuous for fixed (t, x), the map µ 7→
aij(t, µ, x) = ãij(t,

dµ
dx (x), x) is not continuous w.r.t. the weak or vague topology

(or, as a matter of fact, any other reasonable topology on M+
b ), since µ 7→ dµ

dx (x) is
not continuous between any of these topologies and R. Hence, in the Nemytskii-case,
one faces irregular coefficients.

We give a few important examples of NLFPEs of Nemytskii type.

(i) The classical Porous Media Equation (PME)

∂tu(t) = ∆(u(t)m), (t, x) ∈ (0,∞)× Rd,

m > 0, for the class of nonnegative solutions u > 0 can be written as

∂tu(t) = ∂2
ij(aij(u(t, x))u(t))

with aij(r) = δijr
m−1. Hence, the PME is a Nemytskii-type NLFPE in density

form. The cases m > 1 and m < 1 are called slow and fast diffusion case,
respectively (m = 1 gives the heat equation). The reason for these names
is that if u(x) → 0, for m > 1 and m < 1 the diffusion coefficient um−1

degenerates and explodes, respectively.

(ii) More generally, consider the generalized PME

∂tu(t) = ∆β(u)− div
(
DB(u(t))u(t)

)
, (t, x) ∈ (0,∞)× Rd,

where β ∈ C1(R), β(0) = 0, D : Rd → Rd, B : R+ → R, which can be written
in NLFPE density form as

∂tu(t) = ∂2
ij(aij(u(t, x))u(t))− div

(
b(x, u(t, x))u(t)

)
,

with aij(r) = β(r)
r , b(x, r) = D(x)B(r), where β(0)

0 := β′(0).

(iii) Consider the p-Laplace equation

∂tu(t) = div(|∇u(t)|p−2∇u(t)), (t, x) ∈ (0,∞)× Rd.
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3 Nonlinear Fokker–Planck equations

For a suitable subclass of solutions, it is equivalent to

∂tu(t) = ∆
(
|∇u(t)|p−2u

)
− div

(
∇(|∇u(t)|p−2)u(t)

)
,

which is a Nemytskii-type NLFPE in density form with coefficients

aij(u, x) = δij |∇u|p−2(x), bi(u, x) = ∂i|∇u|p−2(x).

(iv) The 2D Navier–Stokes equations in vorticity form can written as a Nemytskii-
type NLFPE in density form.

The definition of solutions in the nonlinear case is analogous to Definitions 1.2.1,
1.2.4, 1.2.5. We explicitly only state the following notion.

Definition 3.1.1. A Borel curve (µt)t>0 ⊆M solves (3.1.1) with initial value ν ∈M+
b ,

if (t, x) 7→ aij(t, µt, x), bi(t, µ, x) are Borel maps in L1
loc((0,∞)× Rd;µtdt), and for

every ϕ ∈ C∞c (Rd) there is a set Jϕ ⊆ (0,∞) of full dt-measure such that for all
t ∈ Jϕ∫

Rd
ϕdµt =

∫
Rd
ϕdν + lim

τ→0+

∫ t

τ

∫
Rd
La,b,µsϕdµsds. (3.1.4)

Compared to the linear case, here we omit a zero-order coefficient c (in general
also dependent on the solution). A bit more generally, one may require µt ∈M only
dt-a.s. and the existence of a Borel curve dt-version µ̃ of µ such that µ̃t ∈M for all
t > 0 such that∫

Rd
ϕdµt =

∫
Rd
ϕdν + lim

τ→0+

∫ t

τ

∫
Rd
La,b,µ̃sϕdµsds.

Remark 3.1.2. One could require the coefficients to be B(R+) ⊗ B(M+
b ) ⊗ B(Rd)-

measurable (where B(M+
b ) denotes the Borel σ-algebra w.r.t. either the weak or

vague topology). Then it follows that (t, x) 7→ a(t, µt, x) and (t, x) 7→ b(t, µt, x)
are product measurable on R+ × Rd for every Borel curve (µt)t>0 (Exercise 6.1).
We follow a slightly different approach by not requiring such a property, but instead
require a solution (µt)t>0 to render (t, x) 7→ a(t, µt, x) and (t, x) 7→ b(t, µt, x) mea-
surable. Conceptually, the latter is a weaker assumptions on the coefficients without
narrowing the notion of solution.

Linearized equations. A very important object related to the nonlinear FPE is
the family of associated linearized FPEs, obtained as follows: For any Borel curve
t 7→ µt ∈M+

b , consider the linear FPE

∂tνt = ∂2
ij

(
aij(µt)νt

)
− ∂i(bi(µt)νt), t > 0, (µ-`FPE)

where by aij(µt) and bi(µt) we abbreviate the maps x 7→ aij(t, µt, x) and x 7→
bi(t, µt, x), respectively. For given µ = (µt)t>0, we denote this linear equation by
(µ-`FPE).
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3 Nonlinear Fokker–Planck equations

Remark 3.1.3. (i) A solution (µt)t>0 to the nonlinear FPE in the sense of Def-
inition 3.1.1 with initial datum ν also solves (µ-`FPE), i.e. ”any nonlinear
FPE-solution also solves its own linearized FPE”.

(ii) The coefficients of the linearized FPEs are time-dependent, even if the non-
linear coefficients itself are time-independent.

Taking into account (i) of the previous remark, many results for solutions to linear
equations can be proven for solutions to nonlinear equations as well. For instance,
we have

Lemma 3.1.4. The results of Lemma 1.2.6 hold analogously for solutions to (3.1.1).

Since (3.1.4) is invariant under changing (La,b,µt)t>0 to (La,b,µ̃t)t>0 for a Borel
curve dt-version µ̃ of µ, the consideration of the linearized equations yields the
following analog of Proposition 1.3.8:

Lemma 3.1.5. Let µ = (µt)t>0 ⊆ M be a solution to the NLFPE with initial value
ν ∈M+

b such that ess supt>0 µt(Rd) <∞ and

[(t, x) 7→ aij(t, µt, x)], [(t, x) 7→ bi(t, µt, x)] ∈ L1
loc([0,∞)× Rd;µtdt). (3.1.5)

Then there is a unique vaguely continuous dt-version µ̃ of µ, and µ̃ also solves
the NLFPE with initial datum ν.

If in addition the maps from (3.1.5) are in L1([0, T ] × Rd;µtdt) for all T > 0,
then µ̃(Rd) = ν(Rd) for all t > 0 and t 7→ µ̃t is weakly continuous.

Proof. Consider (µt)t>0 as a solution to (µ-`FPE). By (3.1.5), Proposition 1.3.8
applies and yields a unique vaguely continuous version (µ̃t)t>0 with µ̃0 = ν, solving
(µ-`FPE). Hence (µ̃t)t>0 solves the NLFPE. The second part follows from the second
part of Proposition 1.3.8.

3.2 An existence result via a fixed point argument

The content of this subsection is taken from [14].
Let T > 0 and Mb([0, T ]×Rd) be the linear space of signed measures with finite to-

tal variation. For Borel curves (µt)t∈[0,T ] ⊆Mb(Rd) such that ess supt∈[0,T ] |µt|(Rd) <
∞, we identify (µt)t∈[0,T ] with µ = µtdt ∈Mb([0, T ]× Rd).

Recall that Mb([0, T ] × Rd) is a normed space with the Kantorovich-Rubinstein
norm

||µ|| := sup
f∈Lip1

∫
fdµ,

where Lip1 denotes the set of Lipschitz functions from Rd to R with Lipschitz
constant less or equal to 1 which are also uniformly bounded by 1. Moreover, the
topology generated by this norm on the nonnegative halfspace M+

b ([0, T ] × Rd) is
the topology of weak convergence of measures.

We will use the following fixed point theorem by Schauder.
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3 Nonlinear Fokker–Planck equations

Theorem 3.2.1. Let X be a normed space, K ⊆ X a compact convex subset, and
F : K → K continuous. Then there is k ∈ K with F (k) = k.

For V : Rd → R+, T0 6 T and g ∈ C+([0, T ]) (the space of continuous maps from
[0, T ] to R+), define MT0,g(V ) as the set of nonnegative measures µ = (µt)t∈[0,T0]

in Mb([0, T0]× Rd)) such that∫
Rd
V dµt 6 g(t), ∀t ∈ [0, T0].

Let aij , bi be defined on [0, T ]×M+
b ×Rd. We will prove an existence result for the

NLFPE (3.1.1) under the following assumptions.
(H1). There is V ∈ C2(Rd,R+), V > 0, lim|x|→∞ V (x)→∞, and maps Λ1,Λ2 :

C+([0, T ]) → C+([0, T ]) such that for all T0 ∈ (0, T ] and g ∈ C+([0, T ]): For all
(t, ν, x) ∈ [0, T0]×MT0,g(V )× Rd

La,b,νV (t, x) 6 Λ1[g](t) + Λ2[g](t)V (x).

From now on, we fix V (but not T0 or g) and write MT0,g instead of MT0,g(V ).

Definition 3.2.2. We say a sequence µn = (µnt )t∈[0,T0] in MT0,g is V -convergent to
µ = (µt)t∈[0,T0] in MT0,g if

lim
n→∞

∫
Rd
f dµnt =

∫
Rd
f dµt, ∀t ∈ [0, T0]

for all f ∈ C(Rd) such that lim|x|→∞
f(x)
V (x) = 0. In particular, V -convergence implies

weak convergence.

(H2). For all T0 ∈ (0, T ], g ∈ C+([0, T ]), ν ∈MT0,g, the maps

t 7→ aij(t, νt, x), t 7→ bi(t, νt, x)

are Borel on [0, T0] for each fixed x, locally bounded in x uniformly in (t, ν) ∈
[0, T0]×MT0,g, and x-locally equicontinuous in (t, ν). Moreover, if µn V -converges
to µ in MT0,g, then

aij(t, µ
n
t , x)→ aij(t, µt, x), bi(t, µ

n
t , x)→ bi(t, µt, x), ∀(t, x) ∈ [0, T0]× Rd.

(H3). For all T0 ∈ (0, T ], g ∈ C+([0, T ]) and ν ∈ MT0,g, a(t, νt, x) is symmetric
and nonnegative definite for all (t, x) ∈ [0, T0]× Rd.

Theorem 3.2.3. Suppose (H1)-(H3) are satisfied, and let µ0 ∈ P such that V ∈
L1(Rd, µ0).

(i) There is T0 6 T such that the NLFPE has a weakly continuous probability
solution on [0, T0] with initial datum µ0.

(ii) If Λ1,Λ2 from (H1) are constant from C+([0, T ]) to C+([0, T ]), then T0 = T .
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3 Nonlinear Fokker–Planck equations

In both cases, this solution (µt)t∈[0,T0] satisfies

sup
t∈[0,T0]

∫
Rd
V dµt <∞ (3.2.1)

and

[(t, x) 7→ aij(t, µt, x)], [(t, x) 7→ bi(t, µt, x)] ∈ L1
loc([0, T0]× Rd;µtdt).

The proof proceeds via several steps:

(a) Case of a nondegenerate and sufficiently smooth diffusion matrix a;

(b) Degenerate and sufficiently smooth case;

(c) General case (i.e. only (H1)-(H3) are assumed).

Due to time constraints, we only give details regarding (a). The remaining parts
can be found in [14].

3.2.1 Proof of Theorem 3.2.3.

For part (a), we replace (H3) by the following stronger assumption.
(H3’). (H3) holds, and in addition for each T0 ∈ (0, T ], g ∈ C+([0, T ]), ν ∈MT0,g

and compact U ⊆ Rd, there is λ = λ(ν, U) > 0 such that a(t, νt, x) > 0 for all
(t, x) ∈ [0, T0]× Rd and

|a(t, νt, x)− a(t, νt, y)| 6 λ(ν, U)|x− y|, ∀x, y ∈ U, t ∈ [0, T0].

Moreover, assume there are finite constants Ci = Ci(ν) such that

|
»
a(t, νt, x)∇V (x)| 6 C1 + C2V (x), ∀(t, x) ∈ [0, T0]× Rd.

Let T0 6 T , g ∈ C+([0, T ]) and ν ∈ MT0,g. Then by [22, Thm.3.1], assumptions
(H1),(H2),(H3’) imply the existence of a unique weakly continuous probability so-
lution ζ = ζ(ν) to (ν-`FPE) on [0, T0] with initial datum µ0 such that

[(t, x) 7→ aij(t, νt, x)], [(t, x) 7→ bi(t, νt, x)] ∈ L1
loc([0, T0]× Rd; ζtdt).

Hence we may consider the well-defined map

Q : MT0,g →Mb([0, T0]× Rd), Q(ν) := ζ(ν).

Note that Q depends on T0, g (and V ).

Remark 3.2.4. Suppose there is T0 6 T, g ∈ C+([0, T ]) such that

(I) MT0,g ⊆Mb([0, T0]× Rd) is convex and compact;

(II) Q is continuous on MT0,g and Q
(
MT0,g

)
⊆MT0,g.
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3 Nonlinear Fokker–Planck equations

Then, by Schauder’s fixed point theorem, there is a fixed point of Q in MT0,g. This
fixed point is a weakly continuous solution to the NLFPE with initial datum µ0 and
satisfies the final assertion of Theorem 3.2.3.

We will prove (I)+(II) for a subset NT0,g ⊂MT0,g, which is obviously sufficient.

Indeed, define NT0,g as the subset of MT0,g consisting of those (µt)t∈[0,T0] such

that for all ϕ ∈ C∞c (Rd)∣∣∣∣ ∫
Rd
ϕdµt −

∫
Rd
ϕdµs

∣∣∣∣ 6 Λ(T0, g, ϕ)|t− s|, ∀t, s ∈ [0, T0], (3.2.2)

where Λ(T0, g, ϕ) := sup(t,ν,x)∈[0,T0]×MT0,g
×Rd{|La,b,νϕ(t, x)|}. This value is finite

due to (H2).

Lemma 3.2.5. Every sequence µn = (µnt )t∈[0,T0] in NT0,g has a weakly convergent
subsequence (µnk) with limit µ ∈ NT0,g. Moreover, for each t ∈ [0, T0], µnkt weakly
converges to µt.

The first part of the assertion just means that NT0,g ⊆Mb([0, T0]×Rd) is sequen-
tially compact.

Proof. Exercise 8.1.

Corollary 3.2.6. NT0,g ⊆Mb([0, T0]× Rd) is convex and compact.

Proof. For convexity, note that (3.2.2) is stable w.r.t. convex combinations and
that MT0,g is convex by definition. Since the topology of Mb([0, T ]×Rd) is induced
by a norm, a subset M ⊆Mb([0, T0]×Rd) is compact if and only if it is sequentially
compact. The latter holds for NT0,g by the previous lemma.

Lemma 3.2.7. If a sequence µn weakly converges to µ in NT0,g, then µn V -converges
to µ.

Proof. First note that µnt weakly converges to µt for all t ∈ [0, T0]. Indeed, let
t ∈ [0, T0]. By Lemma 3.2.5, each subsequence µnl has a further subsequence µnlk

such that µ
nlk
t weakly converges to µt. Hence, µnt weakly converges to µt.

Also note: Since g is bounded on [0, T ] and there is σ > 0 such that V (x) > σ
for all x ∈ Rd, it follows that supµ∈MT0,g

{µt(Rd), t ∈ [0, T0]} 6 c0 < ∞, with

c0 := |g|∞[infx∈Rd V (x)]−1

Let now f ∈ C(Rd) such that lim|x|→∞
f(x)
V (x) = 0. Set h(x) := f(x)

V (x) , i.e. h ∈
C0(Rd) (the set of continuous functions vanishing at infinity). Hence, for ε > 0,
there is ψ ∈ Cc(Rd) with |h− ψ|∞ < ε. Then∣∣∣∣ ∫

Rd
f dµnt −

∫
Rd
f dµt

∣∣∣∣ =

∣∣∣∣ ∫
Rd
hV dµnt −

∫
Rd
hV dµt

∣∣∣∣
6

∣∣∣∣ ∫
Rd
ψV dµnt −

∫
Rd
ψV dµt

∣∣∣∣+ 2ε|g|∞.

Since ψV ∈ Cb(Rd), µnt → µt weakly and ε > 0 was arbitrary, the claim follows.
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3 Nonlinear Fokker–Planck equations

Lemma 3.2.8. If Q(NT0,g) ⊆ NT0,g for some T0 6 T , g ∈ C+([0, T ]), then Q is
continuous on NT0,g.

Proof. Since the topology on NT0,g ⊆ Mb([0, T0] × Rd) is induced by a norm, it
suffices to prove sequential continuity. So, let µn, µ ∈ NT0,g such that µn → µ
weakly, and set ζn := Q(µn). Since ζn ∈ NT0,g, for any subsequence of ζn, Lemma
3.2.5 yields a further subsequence ζnkl with limit ζ ∈ NT0,g. A priori, this limit
depends on {nkl}, but we will show ζ = Q(µ), which then implies that ζn weakly
converges to Q(µ). We now denote ζnkl by ζn. Lemma 3.2.5 also implies the
weak convergence ζnt → ζt for all t ∈ [0, T0]. Moreover, Lemma 3.2.7 implies V -
convergence of µn to µ.

Let t ∈ [0, T0]. By (H2), the maps x 7→ aij(t, µ
n
t , x) converge pointwise to

aij(t, µt, x), are locally in x uniformly in n bounded and locally in x uniformly
in n equicontinuous. Hence, by the Arzela-Ascoli theorem, they converge locally
uniformly. The same is true for the convergence of bi(t, µ

n
t , x) to bi(t, µt, x).

Next we show ζ = Q(µ). Let ϕ ∈ C∞c (Rd). Then, since Q(µn) = ζn, we have∫
Rd
ϕdζnt −

∫
Rd
ϕdµ0 =

∫ t

0

∫
Rd
La,b,µnϕdζ

n
s ds, t ∈ [0, T0].

We have∫
Rd
La,b,µnϕdζ

n
s =

∫
Rd

(
La,b,µnϕ− La,b,µϕ

)
dζns +

∫
Rd
La,b,µϕdζ

n
s ,

where the first summand on the RHS converges to 0 as n→∞ and the second one
converges to

∫
Rd La,b,µϕdζs. Since |La,b,µnϕ(t, x)| 6 Λ(T0, g, ϕ) <∞, we can apply

Lebesgue’s dominated convergence theorem to obtain

lim
n→∞

∫ t

0

∫
Rd
La,b,µnϕdζ

n
s ds =

∫ t

0

∫
Rd
La,b,µϕdζds.

Now the weak convergence ζnt → ζt for all t ∈ [0, T0] yields the claim.

The next lemma is the final preliminary step for finding suitable T0 and g to
apply the previous lemma.

Lemma 3.2.9. Suppose ν ∈ NT0,g, ζ = Q(ν). Then, for all t ∈ [0, T0],∫
Rd
V dζt 6 S[g](t) +R[g](t)

∫
Rd
V dµ0,

where

R[g](t) := exp

Å∫ t

0

Λ2[g](s)ds

ã
, S[g](t) := R[g](t)

∫ t

0

Λ1[g](s)ds.

Proof. Let ν be as in the assertion and ηm ∈ C∞(R+) such that 0 6 η′m(x) 6 1,
η′′m 6 0, ηm(x) = x if x 6 m − 1, ηm(x) = m if x > m. Recall that by definition ζ
satisfies for all ϕ ∈ C2

c (Rd)∫
Rd
ϕdζt −

∫
Rd
ϕdµ0 =

∫ t

0

∫
Rd
La,b,νϕdζsds, ∀t ∈ [0, T0].
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3 Nonlinear Fokker–Planck equations

Choose ϕ(x) := ηm ◦ V (x)−m, and note

La,b,νϕ(t, x) = η′m(V (x))La,b,νV (t, x) + η′′m(V (x))a(t, νt, x)∇V (x) · ∇V (x).

Therefore∫
|V |6m−1

V dζt 6
∫
Rd
ηm(V ) dζt 6

∫
Rd
V dµ0+

∫ t

0

∫
|V |6m

η′m(V (x))La,b,νV (s, x) dζs(x)ds.

Since η′m 6 1 and since (H1) entails∫ t

0

∫
|V |6m

La,b,νV (s, x) dζsds 6
∫ t

0

Å
Λ1[g](s) + Λ2[g](s)

∫
|V |6m

V dζs

ã
ds,

we arrive, by letting m→∞, at∫
Rd
V dζt 6

∫
Rd
V dµ0 +

∫ t

0

Å
Λ1[g](s) + Λ2[g](s)

∫
Rd
V dζs

ã
ds.

Now Gronwall’s lemma yields∫
Rd
V dζt 6

ï ∫
Rd
V dµ0 +

∫ t

0

Λ1[g](s)ds

ò
exp

Å∫ t

0

Λ2[g](s)ds

ã
,

which is the claim.

Finally, for both parts (i) and (ii) of the theorem, we find T0 6 T and g ∈
C+([0, T ]) such that Q(NT0,g) ⊆ NT0,g:

Corollary 3.2.10. There is T0 6 T and g ∈ C+([0, T ]) constant and strictly positive
such that Q(NT0,g) ⊆ NT0,g. Moreover, if the mappings Λ1 and Λ2 are constant,
then one can choose T0 = T .

Proof. By the previous lemma, we have for any ν ∈ NT0,g, ζ = Q(ν), T0 6 T, g ∈
C+([0, T ]) ∫

Rd
V dζt 6 S[g](t) +R[g](t)

∫
Rd
V dµ0.

For any choice of g, note that S[g](t) → 0 and R[g](t) → 1 as t → 0. Set g :=
2
∫
Rd V dµ0 + 1 and choose T0 = T0(g) such that S[g](t) 6 1 and R[g](t) 6 2 for all

t ∈ [0, T0]. Then ∫
Rd
V dζt 6 g(t), ∀t ∈ [0, T0].

So, Q(NT0,g) ⊆ MT0,g, and the claim follows, since (3.2.2) is fulfilled for every
element in the range of Q.

For the second part, first note that S and R do not depend on g, since they are
functions of Λ1,Λ2, which are now independent of g by assumption. Set

g(t) := max
r∈[0,T ]

Å
S(r) +R(r)

∫
Rd
V dµ0

ã
, ∀t ∈ [0, T ].

Then, obviously
∫
Rd V dζt 6 g(t) for all t ∈ [0, T ]. Hence, as above, we conclude

Q(NT,g) ⊆ NT,g.
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3 Nonlinear Fokker–Planck equations

We can now complete the proof of Theorem 3.2.3 as follows:
For (i) and (ii) of the assertion, consider T0 and g as in the previous corollary,

respectively, such that Q(NT0,g) ⊆ NT0,g. By Lemma 3.2.8 Q is continuous on
NT0,g. Since Corollary 3.2.6 implies that NT0,g is a convex and compact subset of
the normed space Mb([0, T0] × Rd), we may apply Schauder’s fixed point theorem
to obtain a fixed point µ = (µt)t∈[0,T0] ∈ NT0,g of Q, i.e. Q(µ) = µ. As explained
in Remark 3.2.4, µ is the solution from the assertion. µ ∈ NT0,g yields (3.2.1).

3.3 McKean–Vlasov SDEs

Consider coefficients aij , bi as in the beginning of Subsection 3.1, let σ : R+ ×
P × Rd → Rd×d be such that 1

2σσ
T = a pointwise, and let B denote a standard

d-dimensional Brownian motion.
In this section, we consider the following SDEs related to the measure-dependent

coefficients b and σ

dXt = b(t,Xt,LXt)dt+ σ(t,Xt,LXt)dBt, t > 0. (3.3.1)

Such equations are called McKean–Vlasov SDEs or distribution-dependent SDEs,
short DDSDEs. In contrast to the classical ”linear” case, here the drift vector and
diffusion matrix depend not only on the current position, but also on the distribution
of the solution. For a partial literature overview on DDSDEs, see Exercise sheet 8.

The following definition is completely analogous to the non-distribution depen-
dent case.

Definition 3.3.1. A weak solution to (3.3.1) is a triple, consisting of a filtered
probability space (Ω,F, (Ft)t>0,P), a d-dimensional standard (Ft)-Brownian mo-
tion and an (Ft)-adapted Rd-valued stochastic process X = (Xt)t>0 on Ω such that
(t, ω) 7→ b(t,Xt(ω),LXt) and (t, ω) 7→ σ(t,Xt(ω),LXt) are B(R+)⊗ F-measurable,

E
ï∫ T

0

|b(t,Xt,LXt)|+ |σ(t,Xt,LXt)|2 dt
ò
<∞, ∀T > 0,

and P-a.s.

Xt = X0 +

∫ t

0

b(s,Xs,LXs)ds+

∫ t

0

σ(s,Xs,LXs)dBs, ∀t > 0.

As in the non-distribution dependent case, we call LX0 the initial condition (or
datum) of X.

Solutions are weakly unique for initial condition µ0, if LX0
= µ0 = LY0

implies
LX = LY for any weak solutions X,Y .

It is obvious how to extend the previous definition to initial times s > 0.
As for nonlinear Fokker–Planck equations, one can also consider linearized DDS-

DEs, i.e. one first fixes a curve t 7→ νt (not necessarily related to any solution) of
probability measures in the coefficients and then studies the non-distribution de-
pendent SDE with coefficients (t, x) 7→ b(t, νt, x), σ(t, νt, x). We denote this SDE
by (ν-`SDE).
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3 Nonlinear Fokker–Planck equations

However, the name linearized DDSDE can be misleading, as the coefficients are
typically nonlinear in x. Equation (ν-`SDE) is equivalent to the system®

dXt = b(t,Xt,LXt)dt+ σ(t,Xt,LXt)dBt,

LXt = νt, ∀t > 0.

Remark 3.3.2. It is straightforward to check that any weak DDSDE-solution X is a
weak solution to (ν-`SDE) with νt := LXt .

One can also consider the distribution-dependent martingale problem (also called
nonlinear martingale problem) associated with the DDSDE (3.3.1), and one has
the same equivalence of existence and uniqueness of weak solutions to (3.3.1) and
solutions to this nonlinear martingale problem as in the ”linear” case (Exercise 8.1).

From DDSDEs to NLFPEs. As might be expected, the relation from (3.3.1) to the
NLFPE (3.1.1) is similar to the ”linear” case.

Proposition 3.3.3. Let X be a weak solution to (3.3.1). Then,

µ = (µt)t>0, µt := LXt

is a weakly continuous probability solution to the NLFPE with coefficients b and a,
where a = 1

2σσ
T . Moreover, aij(t, µt, x), , bi(t, µt, x) ∈ L1([0, T ]× Rd;µtdt) for all

T > 0.

Proof. Exercise 8.2.

In particular: One method to construct weakly continuous probability solutions
to NLFPEs is to first solve the corresponding DDSDE and then consider the curve
of one-dimensional time marginals of the solution of the latter. There is a list of
methods and results on existence and uniqueness for DDSDEs, but we are only going
to briefly consider one of these results here. See Exercise 8.3 for more literature on
such results.

Well-posedness under Wasserstein-Lipschitz- and monotonicity assumptions. Con-
sider for p ∈ [1,∞) the p-Wasserstein space

Pp :=

ß
ζ ∈ P :

∫
Rd
|x|p dζ(x) <∞

™
and, for ζ, ν ∈ Pp, the p-Wasserstein distance

Wp(ζ, ν) := inf
Λ∈C(ζ,ν)

Å∫
Rd×Rd

|x− y|p dΛ(x, y)

ã 1
p

,

where C(ζ, ν) is the set of all couplings between ζ and ν. A coupling between ζ
and ν is any Borel probability measure Λ on Rd ×Rd such that Λ ◦ (π1)−1 = ζ and
Λ ◦ π2)−1 = ν. C(ζ, ν) is non-empty, since ζ ⊗ ν ∈ C(ζ, ν). Here we denote by
πi : Rd × Rd → Rd the projection on the i-th component.
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3 Nonlinear Fokker–Planck equations

The spaces (Pp,Wp) are complete (!) metric (!) spaces and are used frequently
in the study of DDSDEs and other aspects of stochastic analysis.

Consider p > 1, product-measurable coefficients σij , bi defined on R+ × P × Rd
with the following assumptions. Pp is always equipped with the topology induced
by Wp (which is strictly stronger than the weak topology on Pp).

(A0) b(t, ·, ·) is continuous on Pp × Rd for all t > 0.

(A1) ∃ K1,K2 ∈ C(R+,R+) non-decreasing such that for all t > 0, ζ, ν ∈ Pp, x, y ∈
Rd

|σ(t, ζ, x)− σ(t, ν, y)|2 6 K1(t)|x− y|2 +K2(t)Wp(ζ, ν)2.

(A2) 2(b(t, ζ, x)− b(t, ν, y)) · (x− y) 6 K1(t)|x− y|2 +K2(t)Wp(ζ, ν)|x− y|.

(A3) b is bounded on bounded sets in R+ × Pp × Rd, and

|b(t, ζ, 0)|p 6 K1(t)
(
1 + ζ(| · |p)

)
,

where ζ(| · |p) =
∫
Rd |x|

p dζ(x).

Theorem 3.3.4 (Thm.2.1 from [23]). Assume there is p > 1 such that (A0)-(A3)
are satisfied. If p < 2, additionally assume K2 = 0. Then for every initial datum
µ0 ∈ Pp, the DDSDE has a unique weak solution X(µ0) with LXt ∈ Pp for all t > 0.

Moreover, if µ0 ∈ Pq for q > p, then

E
ï

sup
t∈[0,T ]

|X(µ0)t|q
ò
<∞, ∀T > 0.

Finally, there is ψ ∈ C(R+,R+) non-decreasing such that

Wp

(
LX(ζ)t ,LX(ν)t

)p
6 Wp

(
ζ, ν
)p
e
∫ t
0
ψ(r)dr, ∀t > 0.

Remark 3.3.5. Under assumptions (A0)-(A3) one can actually prove that solutions
are probabilistically strong and strongly (i.e. pathwise) unique, see [23] for details.

3.4 Superposition principle: nonlinear case

Unless stated otherwise, the results of this section hold for any initial time s > 0
instead of 0. Analogous to the linear case, we have the following superposition
principle-result for nonlinear FPEs.

We refer to (3.1.1) and (3.3.1) as ”the NLFPE” and ”the DDSDE”, respectively.
For the following result, see [5, 6]

Theorem 3.4.1 (Superposition principle: nonlinear case). Let µ = (µt)t>0 be a
weakly continuous probability solution to the NLFPE (3.1.1) in the sense of Defini-
tion 3.1.1 such that

[(t, x) 7→ bi(t, µt, x)], [(t, x) 7→ aij(t, µt, x)] ∈ L1([0, T ]×Rd;µtdt), ∀T > 0. (3.4.1)

Then there is a weak solution X to the corresponding DDSDE (3.3.1) such that
LXt = µt for all t > 0. In particular, X and µ have the same initial condition.
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3 Nonlinear Fokker–Planck equations

Remark 3.4.2. (i) Note that there is no regularity assumption on the coefficients,
neither in their space- or measure-argument. In particular, the theorem applies
to coefficients of Nemytskii-type.

(ii) The integrability assumption can be weakened to

[
(t, x) 7→ |aij(t, µt, x)|+ |b(t, µt, x) · x|

1 + |x|2
]
∈ L1([0, T ]× Rd;µtdt), ∀T > 0.

Proof of Theorem 3.4.1. (µt)t>0 is a solution to (µ-`FPE) and, by assumption, sat-
isfies (1.3.2) with coefficients (t, x) 7→ aij(t, µt, x) and (t, x) 7→ bi(t, µt, x). Hence
by Theorem 1.3.6, there is a weak solution to (µ-`SDE) X with LXt = µt, t > 0.
Therefore, X solves the DDSDE, which yields the claim.

As in the linear case, the dual statement gives a uniqueness criterion for the
NLFPE:

Corollary 3.4.3. If there is at most one weak solution to the DDSDE with initial
datum ζ, then there is at most one weakly continuous probability solution µ to the
associated NLFPE with initial condition ζ satisfying∫ T

0

∫
Rd
aij(t, µt, x)|+ |bi(t, µt, x)| dµtdt <∞, ∀T > 0.

Proof. By Theorem 3.4.1, any two such NLFPE-solutions can be lifted to a weak so-
lution to the associated DDSDE. By assumption, in particular the one-dimensional
time marginals of these solutions coincide, which yields the claim.

It is left as an exercise to write down explicitly the corresponding DDSDEs for
the NLFPE-examples from Section 3.1.

It is a natural question whether Proposition 1.3.10 extends to the nonlinear case.
This is the content of the next result which shows again the importance of the
linearized equation associated with a NLFPE.

Proposition 3.4.4. Let µ0 ∈ P. Assume:

(i) The NLFPE has a unique weakly continuous probability solution µ with initial
condition µ0.

(ii) The linear FPE (µ-`FPE) has a unique weakly continuous probability solution
for every initial condition (s, δx).

Then weak solutions for the DDSDE with initial condition µ0 are unique.

Proof. Let X and Y be weak solutions to the DDSDE with initial condition µ0.
By Proposition 3.3.3, µ1 := (LXt)t>0 and µ2 := (LYt)t>0 are weakly continuous
probability solutions to the NLFPE with initial condition µ0. Hence, the assumption
implies µi = µ, i ∈ {1, 2}, where µ is the solution from (i). So, X and Y are weak
solutions to (µ-`SDE). So, by Propositions 1.3.10 and 1.3.11, the claim follows.
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Remark 3.4.5. Let X be a weak solution to the DDSDE with initial condition µ0

and denote by (Qx)x∈Rd the disintegration family of LX w.r.t. π0. In contrast to
the linear case (see Lemma 1.3.2), it is not true in general that for µ0-a.e. x the
measure Qx is a solution law to the same equation than X. In fact, considering X
as a solution to its own linearized SDE, it follows from Lemma 1.3.2 (i) that µ0-a.e.
Qx is a solution law to this linearized SDE. Since in general LQx(t) 6= LXt (unless
µ0 is a Dirac measure), the latter equation is not the same as the original DDSDE.

Therefore, the uniqueness of weak solutions to the DDSDE for all Dirac initial
data does not imply weak uniqueness for all initial data. Note that in Proposition
1.3.11 this was proven in the linear case.

DDSDEs and Markov processes. In Theorem 2.2.2, we particularly proved the fol-
lowing: If a ”linear” (i.e. non-distribution dependent) time-homogeneous SDE has
a unique weak solution law Px for all initial data δx, x ∈ Rd, then (Px)x∈Rd is a
Markov process (in the canonical model). For the proof, we heavily used the sta-
bility of the associated linear martingale problem w.r.t. disintegration, i.e. Lemma
1.3.2, which – as said in the previous remark – fails in the case of a distribution-
dependent SDE/a nonlinear martingale problem. As a consequence, we have:

Fact. The family of weak solution laws (Px)x∈Rd of a weakly well-posed DDSDE
is, in general, not a Markov process.

One possible way to resolve this issue is to assume that for every νx = (νxt )t>0,
νxt := Px ◦ π−1

t , the SDE (νx-`SDE) is weakly well posed. Then, by Theorem
2.2.2, there is a family of Markov processes (P xy )y∈Rd , where P xy denotes the unique
weak solution law to (νx-`SDE) with initial condition δy. This way, each Px is a
member of a Markov process, namely Px = P xx . The issue with this ansatz is the
additional assumption on the well-posedness of the family (!) of linearized SDEs
and, even more, the fact that the family of families (P xy )y∈Rd , x ∈ Rd, contains a
lot of irrelevant ”information” with regard to (Px)x∈Rd .

We will present a different, more suitable, method later on.
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equations

Let aij , bi : R+ × P × Rd → R be such that a = (aij)i,j6d is pointwise symmetry
and nonnegative definite, and consider our usual NLFPE

∂tµt = ∂2
ij

(
aij(t, µt, x)µt

)
− ∂i

(
bi(t, µt, x)µt

)
. (4.0.1)

For (s, ζ) ∈ R+ × P, denote by Ss and Ss,ζ the sets of weakly continuous prob-
ability solutions from time s and its subset of solutions with initial datum (s, ζ),
respectively.

In this chapter, we address the following question: Assume |Ss,ζ | > 1 for all
(s, ζ) ∈ R+×P. Is there µs,ζ ∈ Ss,ζ such that (µs,ζ)s∈R+,ζ∈P has the flow property,
i.e.

µs,ζt = µ
r,µs,ζr
t , ∀0 6 s 6 r 6 t, ζ ∈ P?

This is the same notion of flow as in (2.1.1). We call such a family a flow selection
for the NLFPE.

We will ask the same question for an a priori chosen subset of initial data P0 ⊆ P.
In this case, one also has to check that the flow leaves P0 invariant.

Remark 4.0.1. (i) If |Ss,ζ | = 1, the family of unique elements µs,ζ ∈ Ss,ζ has the
flow property (Exercise 9.1). Note that this is not true if we consider the case
of ’non-Markovian’ coefficients, i.e. when a(t) and b(t) depend not only on
(µt, x), but on ((µr)r6t, x).

(ii) The importance of flow selections will become apparent in the next chapter.

Here we present two very different methods to give positive answers to this ques-
tion: In Section 4.1, we construct a family of solutions with the flow property; in
Section 4.2, we select solutions µs,ζ ∈ Ss,ζ such that this selected family has the
flow property.

4.1 Crandall-Liggett semigroup-method

An excellent reference for the contents of this section is the monograph [2].

4.1.1 Accretive and dissipative operators in Banach spaces

Let X be a Banach space with norm | · |X . We simply write | · |, if no confusion
with the standard Euclidean norm on R can occur. By I we denote the identity
operator, I : X → X, Ix = x.
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Definition 4.1.1. (i) An operator (A,D(A)), A : D(A) ⊆ X → X, is called accre-
tive, if

|x− y| 6 |x− y + λ(Ax−Ay)|, ∀λ > 0, x, y ∈ D(A). (4.1.1)

(ii) An accretive operator is called m-accretive, if R(I + λA) = X for all λ > 0,
where R(I + λA) denotes the range of I + λA : D(A) ⊆ X → X.

(iii) (A,D(A)) is called quasi m-accretive, if there is ω ∈ R such that (A+ωI,D(A))
is m-accretive.

(iv) (A,D(A)) is called dissipative, m-dissipative, quasi m-dissipative, if (−A,D(A))
is accretive, m-accretive, quasi m-accretive, respectively.

’accretive’ = dt. ’wachsend, zunehmend ’.
In fact, one can show that (A,D(A)) is accretive if and only if it satisfies the

inequality from (4.1.1) for some λ > 0, and m-accretive if and only if it is accretive
and R(I + λA) = X for some λ > 0.

Remark 4.1.2. We write Ax for A(x), x ∈ D(A), but (A,D(A)) is NOT assumed
to be linear. In fact, considering nonlinear accretive operators will be essential in
the sequel.

4.1.2 Differential equations in Banach spaces

Let (A,D(A)) be an operator on X, T > 0, and consider the Cauchy problem

y′(t) = Ay(t), y(0) = y0, (4.1.2)

where y0 ∈ X.
The equality is understood in X. This raises two immediate questions: What is

the meaning of y′(t)? Second, to solve this equation pointwise, one needs y(t) ∈
D(A), which is hard (think for instance of X = L2(Rd) and A being a differential
operator). There is a theory of strong solutions to such Cauchy problems, where
both questions are taken into account. We will, however, focus on a different notion
of solution.

Definition 4.1.3. Let T > 0, ε > 0.

(i) An ε-discretization of [0, T ] is any partition pε(t0, . . . , tN ), given by 0 = t0 6
t1 6 . . . 6 tN 6 T such that T − tN 6 ε and ti − ti−1 6 ε, i ∈ {1, . . . , N}.

(ii) A pε(t0, . . . , tN )-solution to (4.1.2) on [0, T ] is a piecewise constant function
z : [0, tN ] → X whose values zi on (ti−1, ti] satisfy the implicit difference
scheme

zi = (ti − ti−1)Azi + zi−1,

for all i ∈ {1, . . . , N}, and z(0) := z0 := y0.

(iii) For ε > 0, an ε-approximate solution to the Cauchy problem (4.1.2) on [0, T ]
is any pε(t0, . . . , tN )-solution for any ε-discretization pε(t0, . . . , tN ).
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4 Flow selections for nonlinear Fokker–Planck equations

Definition 4.1.4. A mild solution to the Cauchy problem (4.1.2) on [0,∞) is a
function y ∈ C([0,∞), X) such that for each ε > 0 and T > 0 there is an ε-
approximate solution zε to (4.1.2) on [0, T ] such that supt6T |y(t)− zε(t)| 6 ε.

The usefulness of this solution notion stems from the famous Crandall–Liggett
nonlinear semigroup result:

Theorem 4.1.5 (Crandall-Liggett nonlinear semigroup theorem, cf. Thm.4.1 of [2]).
Let (A,D(A)) be quasi m-dissipative and y0 ∈ D(A) (the closure of D(A) in X).
Then the Cauchy problem (4.1.2) has a unique mild solution y = y(y0) on R+, and
it is given by

y(t) = lim
n→∞

Å
I − t

n
A

ã−n
y0, t > 0 (4.1.3)

where the convergence holds locally uniformly in t on R+.

Remark 4.1.6. The exponential formula (4.1.3) justifies to also write y(y0)(t) =
exp(tA)(y0), and it is readily seen that S(t, y0) := y(y0)(t) has the (time-homogeneous)
flow property S(t+ s, y0) = S(t, S(s, y0)), ∀t, s > 0, y0 ∈ D(A).

Application to NLFPEs. Consider, for instance, the generalized PME

∂tu = ∆β(u)− div
(
DB(u)u

)
, (t, x) ∈ (0,∞)× Rd (4.1.4)

(see Example (ii) in Section 3.1) under suitable assumptions for β,D,B. In partic-
ular: β ∈ C2(R), D,B bounded. To treat this equation via the Crandall–Liggett
method, consider the operator (A0, D(A0)) on L1(Rd), defined by

A0 : D(A0) ⊆ L1(Rd)→ L1(Rd), A0y := ∆β(y)− div(DB(y)y)

with domain

D(A0) := {y ∈ L1(Rd) : β(y) ∈ L1
loc(Rd), ∆β(y)− div(DB(y)y) ∈ L1(Rd)}.

∆β(y) and div(DB(y)y) are taken in the sense of distributions [which requires only
β(y), DB(y)y ∈ L1

loc(Rd)], and it is only assumed that their sum is in L1(Rd). One
can show (cf. [4])

(i) R(I − λA0) = L1(Rd), ∀λ > 0;

(ii) There is a restriction (A,D(A)) of (A0, D(A0)), i.e. D(A) ⊆ D(A0) and
A = A0 on D(A), such that (i) also holds for A, and (A,D(A)) is dissipative
on L1(Rd);

(iii) D(A) = L1(Rd), where the closure is taken in L1(Rd).

So, Theorem 4.1.5 implies the existence of a unique mild solution u = u(u0) for

u′(t) = Au(t), y(0) = u0 (4.1.5)
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on (0,∞) for all u0 ∈ L1(Rd). In particular, u ∈ C(R+, L
1(Rd)). One can also

show: t 7→ u(t, x)dx is a weakly continuous solution to the Nemytskii-type NLFPE
(4.1.4) in the sense of Definition 3.1.1; u > 0 if u0 > 0; |u(t)|L1 = |u0|L1 for all
t > 0. By Remark 4.1.6, {u(u0)}u0∈L1 has the flow property in L1(Rd).

Conclusion: Posing (4.1.4) as a nonlinear evolution equation in L1(Rd), the
Crandall–Liggett semigroup approach yields a family of weakly continuous (proba-
bility) solutions for every L1(∩P)-valued initial datum, and this family has the flow
property in L1(∩P).

Remark 4.1.7. Note that u(u0) is not necessarily the unique L1-mild solution to
(4.1.4), since we considered a restriction A of A0. So, we only obtain mild unique-
ness for (4.1.5), which is not equivalent to (4.1.4). Under stronger assumptions on
the coefficients, one can prove m-dissipativity of (A0, D(A0)), and in this case –
without passing via a restriction – mild uniqueness for (4.1.4) follows.

4.2 Flow selections

The reference for this section is [17].
We denote by SPs the set of vaguely continuous subprobability measure-valued

solutions µ to the NLFPE such that

[(t, x) 7→ aij(t, µt, x)], [(t, x) 7→ bi(t, µt, x)] ∈ L1
loc([0,∞)× Rd;µtdt),

and SPs,ζ its subset of solutions with initial datum ζ ∈ SP.

Definition 4.2.1. A family {As,ζ}s>0,ζ∈SP, As,ζ ⊆ SPs,ζ , is flow-admissible, if

(i) (µt)t>s ∈ As,ζ =⇒ (µt)t>r ⊆ Ar,µr , ∀r > s > 0, ζ ∈ SP;

(ii) (µt)t>s ∈ As,ζ and (ηt)t>r ∈ Ar,µr implies µ ◦r η ∈ As,ζ , where

(µ ◦r η)t :=

®
µt, if t 6 r

ηt, if t > r.

For each s > 0, we denote by As ⊆ SP the set of ζ for which As,ζ 6= ∅. We
say (s, ζ) is admissible, if ζ ∈ As.

A family µs,ζ , s > 0, ζ ∈ As, is a solution flow to the NLFPE in {As,ζ}, if µs,ζ ∈ As,ζ
and

µs,ζt = µ
r,µs,ζr
t , ∀t > r > s, ζ ∈ As. (4.2.1)

Example 4.2.2. The families As,ζ = SPs,ζ and

As,ζ =

®
SP 1

s,ζ , if ζ ∈ P

∅, if ζ /∈ P

are both flow-admissible, where SP 1
s,ζ is the subset of SPs,ζ consisting of probability

solutions. For a third example, denote by SP�s,ζ the subset of SPs,ζ of curves
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consisting of dx-absolutely continuous subprobability measures for all t > s. Then,
for each SP� ⊆M ⊆ SP the family

As,ζ :=

®
SP�s,ζ , ζ ∈M

∅, ζ /∈M

is flow-admissible. This case appears for Nemytskii-type equations and in cases in
which it is known that for each ζ ∈M solutions from initial datum ζ are function-
valued at each positive time (also called L1-regularization).

We denote by τv the topology of vague convergence on SP. Recall that a topo-
logical space X is Hausdorff, if for any pair of points x, y ∈ X,x 6= y, there exist
disjoint open sets A,B ⊆ X with x ∈ A, y ∈ B. In particular, every metric space is
Hausdorff, but not every Hausdorff space is metrizable.

The main result of this section is the following theorem.

Theorem 4.2.3. Let (H, τ) be a Hausdorff topological space with H ⊆ SP, τ ⊇
τv, and let {As,ζ}s>0,ζ∈SP be flow-admissible. If each As,ζ is a compact subset of
C([s,∞), H) w.r.t. the topology of pointwise (!) convergence, then there exists a
solution flow to the NLFPE in {As,ζ}.

We abbreviate CsH := C([s,∞), H).

Remark 4.2.4. (i) Note that the topology of pointwise convergence on CsH, de-
noted τpt (suppressing the dependence on H and s in the notation), is a rather
coarse topology. For instance, if H is a metric space, then τpt ⊂ τlu on CsH,
where τlu denotes the topology of locally uniform convergence. Recall that for
ordered topologies τ1 ⊆ τ2 on a set X any τ2-compact subset is also τ1-compact,
Thus, the compactness-criterion in the previous theorem is relatively simple
to check.

(ii) Typical choices for H are H = SP, H = P with τ = τv. Another choice is to
take As,ζ as a subset of L2-valued L2-weakly continuous curves and (H, τ) =
(L2∩SP, τ2,w), where τ2,w denotes the weak topology on L2. This space is not
metrizable, but Hausdorff.

Regarding the proof of Theorem 4.2.3, we need the following definition. Set
Qs := Q ∩ [s,∞).

Definition 4.2.5. (i) We call any bijective map ξ : N×Q0 → N0 an enumeration.
For such ξ and k ∈ N0, we write (nk, qk) := ξ−1(k).

(ii) For s > 0, denote by (ms
k)k∈N0 ⊆ N0 the enumerating sequence of N × Qs

with respect to a prescribed enumeration ξ, i.e. there exist exactly k elements
(n, q) in N×Qs with ξ(n, q) < ms

k.

Note that for 0 6 s < r, the sequence (mr
k)l∈N0

is a subsequence of (ms
k)l∈N0

.
Moreover, (CsH, τpt) is Hausdorff, since so is H. A family {fi}i∈I of bounded
measurable functions fi : Rd → R is called measure-separating, if

µ1 6= µ2 ⇐⇒ ∃i ∈ I :

∫
Rd
fi dµ

1 6=
∫
Rd
fi dµ

2
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for all µ1, µ2 ∈M+
b . There exists a countable measure-separating family in Cc(Rd)

(Exercise 10.1).

Proof of Theorem 4.2.3. Let H = {hn, n ∈ N} ⊆ Cc(Rd) be measure-separating,
ξ be an enumeration, (s, ζ) ∈ [0,∞)× SP be admissible and consider

Gs,ζ0 : CsH → R, µ = (µt)t>s 7→
∫
Rd
hnms0

dµqms0
,

us,ζ0 := sup
µ∈As,ζ

Gs,ζ0 (µ),

Ms,ζ
0 :=

(
(Gs,ζ0 )−1(us,ζ0 )

)
∩As,ζ .

Since τv ⊆ τ and H ⊆ Cc(Rd), Gs,ζ0 is continuous on CsH. Furthermore, since As,ζ

is nonempty and compact in CsH, Ms,ζ
0 is nonempty and compact in CsH as well.

Define iteratively for k ∈ N0

Gs,ζk+1 : CsH → R, (µt)t>s 7→
∫
Rd
hnms

k+1
dµqms

k+1
,

us,ζk+1 := sup
µ∈Ms,ζ

k

Gs,ζk+1(µ),

Ms,ζ
k+1 :=

(
(Gs,ζk+1)−1(us,ζk+1)

)
∩Ms,ζ

k .

The same assertions as for Gs,ζ0 and Ms,ζ
0 are true for Gs,ζk+1 and Ms,ζ

k+1. Since

Ms,ζ
k+1 ⊆M

s,ζ
k and CsH is Hausdorff, we obtain

Ms,ζ :=
⋂
k>0

Ms,ζ
k 6= ∅

(Exercise 10.2). When µ(i) = (µ
(i)
t )t>s ∈ Ms,ζ for i ∈ {1, 2}, by construction we

have ∫
Rd
hnms

k
dµ(1)

qms
k

=

∫
Rd
hnms

k
dµ(2)

qms
k

, k ∈ N0.

Since {(nmsk , qmsk), k ∈ N0} = N × Qs, this yields
∫
hndµ

(1)
q =

∫
hndµ

(2)
q for all

(n, q) ∈ N × Qs and hence µ
(1)
q = µ

(2)
q for all q ∈ Qs, because H is measure

separating. Since µ(1) and µ(2) are continuous in the Hausdorff space H, µ(1) = µ(2)

follows. Consequently, Ms,ζ ⊆ As,ζ is a singleton, i.e. Ms,ζ = {µs,ζ} for some
µs,ζ ∈ As,ζ .

It remains to show that the family {µs,ζ}s>0,ζ∈As has the flow property. To this
end, let (s, ζ) be admissible and 0 6 s < r < t. Consider the admissible (!) initial

condition (r, µs,ζr ) and let γ = (γt)t>r be the unique element in Mr,µs,ζr according

to the above selection, i.e. γ = µr,µ
s,ζ
r in our notation. We need to show

γt = µs,ζt , ∀ t > r. (4.2.2)
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Set η := µs,ζ ◦r γ ∈ As,ζ . Due to the iterative maximizing selection of the first part
of the proof, we have∫

Rd
hnms0

dµs,ζqms0
>
∫
Rd
hnms0

dηqms0
. (4.2.3)

If qms0 ∈ [s, r), then ηqms0
= µs,ζqms0

by definition and we have equality in (4.2.3). If

qms0 > r, then qms0 = qmr0 and by the characterizing property of γ in Ar,µs,ζr , and

since (µs,ζt )t∈[r,∞) ∈ Ar,µs,ζr , we obtain∫
Rd
hnms0

dµs,ζqms0
6
∫
Rd
hnms0

dγqms0
=

∫
Rd
hnms0

dηqms0
,

and hence we have equality in (4.2.3) in any case. Next, consider ms
1: since (4.2.3)

is an equality, both (µs,ζt )t>s and (ηt)t>s belong to Ms,ζ
0 . Using the characterization

of µs,ζ again, we obtain∫
Rd
hnms1

dµs,ζqms1
>
∫
Rd
hnms1

dηqms1
, (4.2.4)

clearly with equality if qms1 ∈ [s, r). If qms1 > r and qms0 ∈ [s, r), then ms
1 = mr

0, and
hence∫

Rd
hnms1

dµs,ζqms1
6
∫
Rd
hnms1

dγqms1
=

∫
Rd
hnms1

dηqms1
(4.2.5)

by the characterizing property of γ, which gives equality in (4.2.4). If qms0 , qms1 > r,

then ms
0 = mr

0, ms
1 = mr

1 and both µs,ζ and γ are in M
r,µs,ζr
0 , which also gives

(4.2.5). Hence, equality in (4.2.4) holds in any case. By iteration we obtain∫
Rd
hnms

k
dµs,ζqms

k

=

∫
Rd
hnms

k
dηqms

k
, ∀ k ∈ N0,

and hence, since H is measure separating,

µs,ζq = ηq, ∀q ∈ Qs,

thus in particular µs,ζq = ηq = γq for all q ∈ Qr. Since both curves are continuous
with values in H, we obtain (4.2.2), which closes the proof.

Remark 4.2.6. The previous proof works for any countable measure separating family
from Cc(Rd), any enumeration and any dense countable subset of [s,∞) instead of
Qs. The selected flow depends on these choices.

The iterative selection method from the previous proof allows to also prove the
following characterization.

Proposition 4.2.7. In the situation of the previous theorem, the following are equiv-
alent:
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(i) There exists at most one solution flow to the NLFPE with respect to {As,ζ}(s,ζ)∈[0,∞)×SP.

(ii) |As,ζ | 6 1 for all (s, ζ) ∈ R+ × SP.

Proof. For the nontrivial implication of the assertion, assume there is an admissible
initial condition (s′, ζ ′) ∈ [0, T )× SP with |As′,ζ′ | > 2. As mentioned in the previ-
ous remark, we may choose an enumeration ξ and a family of measure separating
functions H = {hn, n ∈ N} ⊆ Cc(Rd) with H = −H. Consider the flow {µs,ζ}
with (s, ζ) running through all admissible initial conditions, constructed as in the
proof of the previous theorem subject to this H and ξ. By assumption, there exists
γ ∈ As′,ζ′ with µs

′,ζ′ 6= γ, and since both curves are continuous, there is q ∈ Qs′
such that µs

′,ζ′

q 6= γq. Thus, considering −h instead of h if necessary, there is h ∈ H

such that∫
Rd
h dγq >

∫
Rd
h dµs

′,ζ′

q . (4.2.6)

Now consider a new enumeration ξ′ such that according to ξ′ we have (hn
ms
′

0

, qn
ms
′

0

) =

(h, q), and denote the flow subject to H and ξ′ by {ηs,ζ} (the sets of admissible ini-
tial conditions remain unchanged). Selecting as in the proof of the previous theorem
gives ∫

Rd
h dηs

′,ζ′

q = sup
µ∈As′,ζ′

Å∫
Rd
h dµq

ã
.

Therefore, taking into account (4.2.6), we conclude∫
Rd
h dηs

′,ζ′

q >
∫
Rd
h dγq >

∫
Rd
h dµs

′,ζ′

q .

Hence ηs
′,ζ′ 6= µs

′,ζ′ , which contradicts (i) and finishes the proof.

4.2.1 Applications

Recall that a subset A ⊆ X of a topological space X is relatively compact, if its
closure is a compact subset of X. In particular, a closed relatively compact set is
compact. For two topological spaces X,Y , the compact-open topology on C(X,Y )
(the space of continuous maps from X to Y ) is the topology with subbase

{f ∈ C(X,Y ) : f(K) ⊆ O}, K ⊆ X compact, O ⊆ Y open.

For our applications, we will use the following general version of the Arzelá-Ascoli
theorem

Proposition 4.2.8 (Arzelà-Ascoli theorem, Thm.47.1 [15]). Let I be an interval and
(Y, d) a metric space. A subset F ⊆ C(I, Y ) is relatively compact in the compact-
open topology if and only if F is pointwise relatively compact and equicontinuous,
i.e. if
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(i) {f(t), f ∈ F} is relatively compact in Y for all t ∈ I

(ii) For all t ∈ I and ε > 0 there is δ > 0 such that

r ∈ I, |t− r| < δ =⇒ sup
f∈F

d(f(t), f(r)) < ε.

Remark 4.2.9. Let Y (with a fixed topology) be metrizable.

(i) The topology τlu on CsY is independent of the choice of compatible metric on
Y . This follows from the fact that for any such metric, τlu coincides with the
compact-open topology on CsY and the straightforward observation that the
compact-open topology on CsY only depends on the topology of Y , not on its
metric.

(ii) Whether a subset F ⊆ CsY is equicontinuous generally depends on the choice
of compatible metric on Y . However, the Arzelá-Ascoli theorem asserts an
equivalence between a) relative compactness of F and b.1) pointwise relative
compactness plus b.2) equicontinuity. Since properties a) and b.1) for F are
clearly independent of the choice of compatible metric on Y , it follows that
equicontinuity of a pointwise relatively compact set F is independent of the
choice of compatible metric on Y .

The bottomline of the previous remark for our application is: If As,ζ ⊆ CsH
is pointwise relatively compact and we want to prove relative compactness of As,ζ
w.r.t. τlu via Arzelá-Ascoli’s theorem, we may choose any compatible metric on
(H, τ) to prove equicontinuity.

Linear equations. Consider the usual linear FPE

∂tµt = ∂2
ij

(
aij(t, x)µt

)
− ∂i

(
bi(t, x)µt

)
(4.2.7)

and suppose the coefficients aij , bi : (0,∞) × Rd → R, 1 6 i, j 6 d, are Borel and
satisfy

Assumption A1.

(A1.i)
∫ T

0
supx∈Rd

(
|aij(t, x)|+ |bi(t, x)|

)
dt <∞, ∀T > 0, i, j 6 d.

(A1.ii) x 7→ aij(t, x) and x 7→ bi(t, x) are continuous for dt-a.e. t > 0.

We already known that in this case SPs,ζ = SP 1
s,ζ for ζ ∈ P and each curve in SPs,ζ

is weakly continuous. Consider

As,ζ :=

®
SPs,ζ , if ζ ∈ P

∅ , if ζ ∈ SP\P,
(4.2.8)

which is flow-admissible by Example 4.2.2.

Proposition 4.2.10. Suppose Assumption A1 holds and that SPs,ζ is nonempty for
each (s, ζ) ∈ [0,∞)×P. Then there is a solution flow for (4.2.7) in {As,ζ}s>0,ζ∈SP.
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Proof. Let (H, τ) = (SP, τv). By Theorem 4.2.3 and Remark 4.2.4 (i), it suffices to
prove that each As,ζ is a compact subset of CsH w.r.t. τlu, so we prove As,ζ is closed,
pointwise relatively compact and equicontinuous in order to apply Proposition 4.2.8.
Since (SP, τv) is a compact metrizable space (see in particular Remark 1.1.5 (iii)),
pointwise relative compactness follows.

Concerning closedness, since (SP, τv) is metrizable, also (CsSP, τlu) is metrizable,
hence sequential. Thus it suffices to prove that the limit of any τlu-converging

sequence in As,ζ belongs to As,ζ . So, let µ(n) = (µ
(n)
t )t>s, n > 1, be a τlu-converging

sequence in As,ζ with limit µ ∈ CsSP and let ϕ ∈ C2
c (Rd). Due to (A1.ii), we have

La,bϕ(t) ∈ Cc(Rd) dt-a.s., hence∫
Rd
La,bϕ(t) dµ

(n)
t −→

n→∞

∫
Rd
La,bϕ(t) dµt dt-a.s.,

and by (A1.i), Lebesgue’s dominated convergence theorem gives∫ t

s

∫
Rd
La,bϕdµ

(n)
τ dτ −→

n→∞

∫ t

s

∫
Rd
La,bϕdµτdτ, ∀t > s.

Therefore, µ ∈ As,ζ .
Regarding equicontinuity, thanks to Remark 4.2.9, we may consider the following

convenient τv-compatible metric (Exercise 11.1) on SP:

dv(ζ1, ζ2) :=
∑
l>1

2−lC−1
l

ï∣∣∣∣ ∫
Rd
fldζ1 −

∫
Rd
fldζ2

∣∣∣∣ ∧ 1

ò
, ζ1, ζ2 ∈ SP,

where {fl, l ∈ N} =: F ⊆ C2
c (Rd) is arbitrary but fixed and consists of nontrivial

elements such that the closure of F with respect to uniform convergence contains
Cc(Rd). We choose

Cl := 1 +Dl, Dl := (d2 + d) max
16i,j6d

{||∂ifl||∞, ||∂ijfl||∞}.

We obtain for each µ ∈ As,ζ and arbitrary s 6 t1 6 t2:

dv(µt1 , µt2) 6
∑
l>1

2−lC−1
l

ï ∫ t2

t1

∫
Rd
|La,bfl(t)|dµtdt ∧ 1

ò
6
∑
l>1

2−l
ï ∫ t2

t1

max
16i,j6d

sup
x∈Rd

(
|aij(t, x)|+ |bi(t, x)|

)
dt

ò
. (4.2.9)

By (A1.i), for any ε > 0, there is δ > 0 independent of µ such that

t1, t2 > s, |t1 − t2| 6 δ =⇒ dv(µt1 , µt2) 6 ε.

Consequently As,ζ is equicontinuous (even uniformly), which completes the proof.
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With the same proof, one can prove the existence of a solution flow with respect
to As,ζ = SPs,ζ for all ζ ∈ SP (under the assumption that each of these sets is
non-empty). The advantage of the choice (4.2.8) is that the corresponding flow
consists of probability solutions.

Remark 4.2.11. Estimate (4.2.9) is independent of the initial measure ζ, so we
obtain even relative compactness of ∪ζ∈PAs,ζ .

Nonlinear equations. Consider B((0,∞))⊗τv⊗B(Rd)-measurable coefficients aij , bi :
(0,∞)× SP× Rd → R, satisfying

Assumption A2.

(A2.i) (t, ζ, x) 7→ aij(t, ζ, x) and (t, ζ, x) 7→ bi(t, ζ, x) are bounded on (0, T )×SP×Rd
for all T > 0.

(A2.ii) x 7→ aij(t, ζ, x) and x 7→ bi(t, ζ, x) are continuous for each ζ ∈ SP and dt-a.e.
t > 0.

(A2.iii) If ζn −→ ζ vaguely in SP, then aij(t, ζn, x) −→ aij(t, ζ, x) and bi(t, ζn, x) −→
bi(t, ζ, x) locally uniformly in x ∈ Rd for each t > 0.

Note that (A2.iii) excludes the case of Nemytskii-coefficients.
Let As,ζ be as in (4.2.8). As in the linear case, under Assumption A2 we have

SPs,ζ = SP 1
s,ζ for all ζ ∈ P.

Proposition 4.2.12. Suppose Assumption A2 is fulfilled and SPs,ζ is nonempty for
each (s, ζ) ∈ [0,∞) × P. Then there exists a solution flow for the NLFPE in
{As,ζ}s>0,ζ∈SP.

Proof. Set (H, τ) = (SP, τv). As in the linear case, we use the Arzelá-Ascoli theorem
4.2.8 and Theorem 4.2.3, and we prove compactness of As,ζ ⊆ CsH even with
respect to τlu. Again, pointwise relative compactness follows from the compactness
of (SP, τv). Equicontinuity of As,ζ can be prove exactly as in the linear case, using

(A2.i) instead of (A1.i). For closedness, assume a sequence µ(n) = (µ
(n)
t )t>s from

As,ζ τlu-converges to µ = (µt)t>s in CsSP. We need to prove∫ t

s

∫
Rd
L
a,b,µ

(n)
r
ϕdµ(n)

r dr −→
n→∞

∫ t

s

∫
Rd
La,b,µrϕdµrdr (4.2.10)

for each ϕ ∈ C2
c (Rd) and t > s. This follows since∫

Rd
L
a,b,µ

(n)
t
ϕ(t) dµ

(n)
t = C∗0

〈
µ

(n)
t , L

a,b,µ
(n)
t
ϕ(t)

〉
C0
,

where C∗0
〈
µ, f

〉
C0

denotes the dual pairing between f ∈ (C0(Rd), || · ||∞) and a finite

Borel measure µ, understood as an element in the dual space of C0(Rd). Since τv
coincides with the weak-∗ topology on the topological dual of C0(Rd), and since

54



4 Flow selections for nonlinear Fokker–Planck equations

assumptions (A2.ii) and (A2.iii) yield L
a,b,µ

(n)
t
ϕ(t) −→ La,b,µtϕ(t) in (C0(Rd), ||·||∞)

for each t > s, we get

C∗0

〈
µ

(n)
t , L

a,b,µ
(n)
t
ϕ(t)

〉
C0
−→ C∗0

〈
µt, La,b,µtϕ(t)

〉
C0
.

Now (4.2.10) follows by (A2.i) and Lebesgue’s dominated convergence theorem.

Nemytskii-type coefficients. Under suitable assumptions on the coefficients, The-
orem 4.2.3 applies also in the Nemytskii-case. For an example, please see Section
4.2.2. in [17] (Reading exercise 11.2).
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5 Nonlinear Markov processes

As said at the end of Chapter 3, the family of solution laws to a well-posed DDSDE
does not satisfy the Markov property (recall that for us the Markov property is a
property for a family of path laws and not for a single stochastic process [that is, for
a single law]). Now we present a generalized definition of Markov processes, tailored
to apply to such (and, in fact, much more general, i.e. ill-posed) cases. Thereby,
we complete the nonlinear analog of the relations between linear FPEs, SDES and
Markov processes. The main reference for the content of this chapter is [18].

We write Ωs := C([s,∞),Rd) (with the topology of locally uniform convergence),
πst , t > s, for the usual projections on Ωs, and Fs,r := σ(πsτ , s 6 τ 6 r). We also
denote by Πs

r : Ωs → Ωr the path projections Πs
r : w 7→ w|[r,∞) for s 6 r.

5.1 Definition, basic properties, relation to classical

Markov processes

Below, one should think of P0 as the class of ”allowed initial data”.

Definition 5.1.1. Let P0 ⊆ P. A nonlinear Markov process is a family (Ps,ζ)(s,ζ)∈R+×P0

such that Ps,ζ is a probability measure on B(Ωs) with the properties

(i) µs,ζt := Ps,ζ ◦ (πst )
−1 ∈ P0 for all 0 6 s 6 t and ζ ∈ P0.

(ii) The nonlinear Markov property holds, i.e. for all 0 6 s 6 r 6 t, ζ ∈ P0 and
A ∈ B(Rd)

Ps,ζ(πst ∈ A|Fs,r)(·) = p(s,ζ),(r,πsr(·))(π
r
t ∈ A) Ps,ζ − a.s., (5.1.1)

where p(s,ζ),(r,y), y ∈ Rd, is the disintegration-family of Pr,µs,ζr w.r.t. πrr (i.e.

in particular p(s,ζ),(r,y) ∈ P(Ωr) and p(s,ζ),(r,y)(π
r
r = y) = 1).

Note that Ωs × B(Ωr) 3 (ω,C) 7→ p(s,ζ),(r,πsr(ω))(C) is equal to the regular con-
ditional probability of Ps,ζ w.r.t. πsr , restricted to σ(πsu, u > r) (by identifying the
latter σ-algebra with B(Ωr)) (Exercise 12.1).

The name ”nonlinear Markov property” stems from the fact that in usual appli-
cations the family {µs,ζt }06s6t,ζ∈P0 is a family of solutions to a nonlinear FPE.

Proposition 5.1.2. The one-dimensional time marginals µs,ζt = Ps,ζ ◦ (πst )
−1 of a

nonlinear Markov process satisfy the flow property.

Proof. We have for all A ∈ B(Rd) and 0 6 s 6 r 6 t:

µs,ζt (A) = Es,ζ
[
Ps,ζ(πst ∈ A|Fs,r)

]
= Es,ζ

[
p(s,ζ),(r,πsr)(π

r
t ∈ A)

]
= Pr,µs,ζr

(
πrt ∈ A

)
= µ

r,µs,ζr
t (A).
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5 Nonlinear Markov processes

Remark 5.1.3. In contrast to the case of classical Markov processes, it is in general
not true that the marginals µs,ζt satisfy the (time-inhomogeneous version of the)
Chapman–Kolmogorov equations (2.1.3).

The following proposition shows that the finite-dimensional marginals of the
path laws of a nonlinear Markov process (and hence the path laws themselves) are

uniquely determined by the family of one-dimensional time marginals ps,ζr,t (x, dz),

s 6 r, x ∈ Rd, defined in (5.1.2) below.

Proposition 5.1.4. Let (Ps,ζ)(s,ζ)∈R+×P0
be a nonlinear Markov process. For ζ ∈

P0, 0 6 s 6 r 6 t and x ∈ Rd, define ps,ζr,t (x, dz) ∈ P by

ps,ζr,t (x, dz) := p(s,ζ),(r,x) ◦ (πrt )
−1(dz), (5.1.2)

which is uniquely determined for µs,ζr -a.e. x ∈ Rd. Then for any n ∈ N0, f ∈
Bb((Rd)n+1) and s 6 t0 < · · · < tn:

Es,ζ [f(πst0 , . . . , π
s
tn)]

=

∫
Rd

Å
· · ·
∫
Rd

Å∫
Rd
f(x0, . . . , xn) ps,ζtn−1,tn(xn−1, dxn)

ã
ps,ζtn−2,tn−1

(xn−2, dxn−1) . . .

ã
µs,ζt0 (dx0).

Proof. Exercise 12.2.

Remark 5.1.5. Even in the case P0 = P it is usually not true that ps,ζr,t (x, dz) =
Pr,δx ◦ (πrt )

−1(dz), i.e. the family of one-dimensional time marginals needed to
determine the path measures of a nonlinear Markov process is not the family of its
one-dimensional time marginals, but a ”bigger” one, see Remark 5.1.7 below.

The following result shows that the class of nonlinear Markov processes contains
the class of classical normal Markov processes. Let (Ps,x)s>0,x∈Rd be a classical
normal time-inhomogeneous Markov process and set Ps,ζ :=

∫
Rd Ps,xdζ(x), ζ ∈ P.

Proposition 5.1.6. (Ps,ζ)(s,ζ)∈R+×P is a nonlinear Markov process with P0 = P.

Proof. We have Pr,µs,ζr =
∫
Rd Pr,y µ

s,ζ
r (dy), y 7→ Pr,y(A) is measurable for every

A ∈ Ωr and, by normality, Pr,y is concentrated on {πrr = y}. Hence Pr,y, y ∈
Rd, is the disintegration family of Pr,µs,ζr w.r.t. πrr , and thus (5.1.1) holds with
p(s,ζ),(r,πsr(·)) = Pr,πsr(·), which is the classical Markov property.

Remark 5.1.7. If {Ps,ζ}(s,ζ)∈R+×P0
is a nonlinear Markov process, consisting of

solution laws to a DDSDE, then its one-dimensional time marginal curves (µs,ζt )t>s,

µs,ζt = Ps,ζ ◦ (πst )
−1, solve the associated NLFPE, and the curves (ps,ζr,t (x, dz))t>r

from (5.1.2) are weakly continuous probability solutions to (µs,ζ-`FPE) with initial
datum (r, δx) for µs,ζr -a.e. x. The latter follows from Lemma 1.3.2 (i) and Corollary
1.3.5.

Hence, if for all (s, ζ) ∈ R+ × P0 the equation (µs,ζ-`FPE) has a unique weakly
continuous probability solution for every initial datum (r, x) ∈ [s,∞) × Rd, then

((s, ζ) fixed) ps,ζr,t , s 6 r 6 t, are the transition kernels of a linear time-inhomogeneous
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5 Nonlinear Markov processes

Markov process {P s,ζr,x }(r,x)∈[s,∞)×Rd , see Theorem 2.2.2. The family of these pro-
cesses is related to the nonlinear Markov process by

Pr,µs,ζr =

∫
Rd
P s,ζr,x dµ

s,ζ
r (x), ∀0 6 s 6 r, ζ ∈ P0

(i.e. the RHS is the convex mixture of the path laws of the linear Markov processes).
In this case, Proposition 5.1.4 shows that the finite-dimensional marginals of Ps,ζ
(and hence Ps,ζ itself) are uniquely determined by the transition kernels of a linear
Markov process, which depends, however, on (s, ζ).

5.2 Construction of nonlinear Markov processes

As before, we refer to (3.1.1) and the related stochastic equation (3.3.1) as ”the
NLFPE” and ”the DDSDE”. We stress that here we do not impose any regularity
on the coefficients, i.e. in particular Nemytskii-type coefficients are included in the
theory presented below.

We introduce the following notation [not to be confused with the notation Ms,ζ

in the proof of Theorem 4.2.3 ]. For (s, ζ) ∈ R+×P, we denote the space of weakly
continuous probability solutions µ to the NLFPE from (s, ζ) satisfying

[(t, x) 7→ aij(t, µt, x)], [(t, x) 7→ bi(t, µt, x)] ∈ L1([0, T ]× Rd;µtdt), ∀T > 0

by Ms,ζ . For a weakly continuous curve η : [s,∞) ∈ t 7→ ηt ∈ P, we write Ms,ζ
η

for the set of all weakly continuous probability solutions µ to (η-`FPE) from (s, ζ)
satisfying for all i, j 6 d

[(t, x) 7→ aij(t, ηt, x)], [(t, x) 7→ bi(t, ηt, x)] ∈ L1([0, T ]× Rd;µtdt), ∀T > 0.

Recall that µ is an extreme point of the convex set Ms,ζ
η , if µ ∈ Ms,ζ

η and µ =

αµ1 + (1 − α)µ2 for α ∈ (0, 1) and µ1, µ2 ∈ Ms,ζ
η implies µ1 = µ2. The set of

extreme points of Ms,ζ
η is denoted by Ms,ζ

η,ex.

Theorem 5.2.1 (R.-Röckner-nonlinear-Markov-construction). Let P0 ⊆ P and {µs,ζ}(s,ζ)∈R+×P0

be a solution flow to the NLFPE such that µs,ζ ∈Ms,ζ
µs,ζ ,ex

for each (s, ζ) ∈ R+×P0.
Then:

(i) For every (s, ζ) ∈ R+ × P0, there is a unique weak solution Xs,ζ to the
DDSDE with initial condition (s, ζ) and one-dimensional time marginals equal

to (µs,ζt )t>s.

(ii) {Ps,ζ}s>0,ζ∈P0
, Ps,ζ := LXs,ζ , is a nonlinear Markov process. In particular,

its one-dimensional time marginals are µs,ζt , 0 6 s 6 t, ζ ∈ P0.

It should be noted that for a solution flow {µs,ζ}(s,ζ)∈R+×P0
it holds µs,ζt ∈ P0

for all 0 6 s 6 t, ζ ∈ P0.
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5 Nonlinear Markov processes

Remark 5.2.2. (i) Assertion (i) does not mean that there is a unique weak so-
lution which additionally satisfies the stated marginal-property, but instead
that the subclass of solutions with this marginal property contains exactly one
element.

(ii) Note that the theorem does not require any uniqueness for the NLFPE. Of
course, if the NLFPE is well-posed in P0, its unique solution family has the
flow property, but in the absence of uniqueness, a flow may still be obtained
by the methods presented in the previous chapter.

For the proof, we need the following auxiliary result, which, in view of appli-
cations, provides a checkable characterization of the extremality condition of the
previous theorem. For a P-valued curve µ = (µt)t>s and C > 0 set

As,6(µ,C) :=
{

(ηt)t>s ∈ C([s,∞),P) : ηt 6 Cµt, ∀t > s
}
, As,6(µ) :=

⋃
C>0

As,6(µ,C),

where continuity is meant w.r.t. the topology of weak convergence of measures.

Lemma 5.2.3. Let (s, ζ) ∈ R+ × P, η ∈ C([s,∞),P) and µ = (µt)t>s ∈Ms,ζ
η . Then

|(Ms,ζ
η ∩As,6(µ))| = 1 ⇐⇒ µ ∈Ms,ζ

η,ex.

By considering coefficients which do not depend on their measure variable, it is
clear that the previous lemma holds in the case of a linear FPE as well (in this case,
η disappears from the formulation).

Proof. Clearly, µ ∈ Ms,ζ
η ∩ As,6(µ). First, suppose µ /∈ Ms,ζ

η,ex, i.e. there are

µi, i ∈ {1, 2}, in Ms,ζ
η and α ∈ (0, 1) such that

µt = αµ1
t + (1− α)µ2

t , t > s, (5.2.1)

and µ1 6= µ2. Then (5.2.1) implies µi ∈ Ms,ζ
η ∩ As,6(µ), i ∈ {1, 2}, and hence

|(Ms,ζ ∩As,6(µ))| > 2.
Now assume µ ∈ Ms,ζ

η,ex and let ν ∈ Ms,ζ
η ∩ As,6(µ). Then for every t > s there

is %t : Rd → R+, B(Rd)-measurable, such that νt = %t µt, and %t 6 C for all t > s
for some C ∈ (1,∞). Furthermore, for t > s,

µt =
1

C
%t µt + (1− 1

C
%t)µt =

1

C
νt + (1− 1

C
)λt,

where λt :=
1− 1

C %t
1− 1

C

µt. Clearly, for each t > s, the measure λt is nonnegative and

satisfies λt(Rd) = 1. Moreover t 7→ λt is weakly continuous and belongs to Ms,ζ
η .

Since µs,ζ ∈Ms,ζ
η,ex, it follows µt = λt, and hence νt = µt for all t > s.

As a further preparation, we need part (ii) of the following lemma. Part (i) is not
used here, but may be of independent interest. If two nonnegative Borel measures
ζ1, ζ2 satisfy ζ1 � ζ2 and ζ2 � ζ1, we write ζ1 ∼ ζ2.

Note: In the following lemma, by ”solution” we mean weakly continuous probability
solutions satisfying (1.3.2).
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5 Nonlinear Markov processes

Lemma 5.2.4. Consider a linear FPKE with initial datum (s0, ζ0) ∈ R+×P. Then:

(i) If solutions are unique from (s0, ζ0), then solutions are also unique from any
(s0, η) such that η ∈ P, η ∼ ζ0.

(ii) If (νs0,ζ0t )t>s is the unique solution in As0,6(νs0,ζ0) from (s0, ζ0), then in
this class solutions are also unique from any (s0, g ζ0) with g ∈ B+

b (Rd),∫
Rd g(x) ζ0(dx) = 1, and δ 6 g for some δ > 0.

The proof can be found as the proof of Lemma 3.7. in [18].

Proof of Theorem 5.2.1.

We shall need the following auxiliary result, which is taken from [21], see Proposition
2.6. therein.

Lemma 5.2.5. Let 0 6 s 6 r, P ∈ P(Ωs) a solution to a linear martingale problem
with initial time s, and % : Ωs → R+ a bounded Fs,r-measurable probability density
(w.r.t. P ). Then (%P ) ◦ (Πs

r)
−1 solves the same martingale problem with initial

time r.

We can now prove Theorem 5.2.1.

Proof of Theorem 5.2.1. (i) The existence of a weak solution Xs,ζ to the DDSDE
for each initial datum (s, ζ) follows from Theorem 3.4.1. Concerning unique-
ness, note that by assumption and Lemma 5.2.3, for each 0 6 s 6 r, ζ ∈ P0,
(µs,ζ-`FPE) has a unique solution from (r, µs,ζr ) in Ar,6(µs,ζ) (this solution is

(µs,ζt )t>r).

Claim: For any (s, ζ) ∈ R+ × P0 and r > s, solutions to the corresponding
linear martingale problem with one-dimensional time marginals in Ar,6(µs,ζ)
are unique from (r, µs,ζr ).

Proof of Claim: Fix (s, ζ) ∈ R+×P0, r > s, and let P 1, P 2 be such solutions.
Their one-dimensional time marginal curves (P it )t>r,

P it := P i ◦ (πrt )
−1,

solve (µs,ζ-`FPE) from (r, µs,ζr ), and hence

P it = µs,ζt , ∀ t > r, i ∈ {1, 2}. (5.2.2)

For n ∈ N, let

H(n)
r := {Πn

i=1hi(π
r
ti) |hi ∈ B+

b (Rd), hi > ci for some ci > 0, r 6 t1 < · · · < tn},

Hr :=
⋃
n∈N

H(n)
r

and note that Hr is closed under pointwise multiplication and σ(Hr) = B(Ωr).
Hence, by induction in n ∈ N and a monotone class argument, it suffices to
prove

EP 1 [H] = EP 2 [H] for all H ∈ H(n)
r (5.2.3)
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5 Nonlinear Markov processes

for each n ∈ N. For n = 1, (5.2.3) holds by (5.2.2). For the induction step from
n to n + 1, fix r 6 t1 < · · · < tn < tn+1 and functions hi, i ∈ {1, . . . , n + 1},
as specified in the definition of H

(n+1)
r , and set

% : Ωr → R+, % :=
Πn
i=1hi(π

r
ti)

EP 1 [Πn
i=1hi(π

r
ti)]

,

where the denominator is greater or equal to Πn
i=1ci > 0. Note that % is

Fr,tn-measurable and

1

c
6 % 6 c pointwise for some c > 1, (5.2.4)

(where c depends on hi, ti and n) and EP i [%] = 1 for i ∈ {1, 2} by the
induction hypothesis. Since for every f ∈ B+

b (Rd) we have∫
Ωr

f(πrtn) (%P i) =

ï ∫
Ωr

Πn
i=1hi(π

r
ti)f(πrtn)P i

ò(
EP 1 [Πn

i=1hi(π
r
ti)]
)−1

,

and since the induction hypothesis implies that these terms are equal for
i ∈ {1, 2}, it follows that

(%P 1) ◦ (πrtn)−1 = (%P 2) ◦ (πrtn)−1. (5.2.5)

By Lemma 5.2.5, the path measures (%P i) ◦ (Πr
tn)−1, i ∈ {1, 2}, on B(Ωtn)

solve the same linear martingale problem from time tn and, by (5.2.5), with
identical initial condition. Consequently, their curves of one-dimensional time
marginals ηi = (ηit)t>tn := ((%P i)◦ (πrt )

−1)t>tn , i ∈ {1, 2}, solve (µs,ζ-`FPE).
For any A ∈ B(Rd) and t > tn, we have by (5.2.2)

ηit(A) =

∫
Ωr

%(w)1A(πrt (w))P i(dw) 6 c P it (A) = c µs,ζt (A), i ∈ {1, 2},

for c as in (5.2.4), and consequently ηi ∈ Atn,6(µs,ζ). Similarly, ηit(A) >
1
cµ

s,ζ
t (A) for all A ∈ B(Rd) and t > tn. In particular, for t = tn, it follows

that ηitn = gi µs,ζtn for some measurable gi : Rd → R+ such that 1
c 6 gi 6 c,

and
∫
Rd g

i dµs,ζtn = 1. By assumption, Lemma 5.2.3 and 5.2.4 (ii), we obtain
(η1
t )t>tn = (η2

t )t>tn , so in particular η1
tn+1

= η2
tn+1

. Now we have

EP i
[
Πn+1
i=1 hi(π

r
ti)
]

EP 1

[
Πn
i=1hi(π

r
ti)
] =

∫
Ωr

%(w)hn+1(πrtn+1
(w))P i(dw) =

∫
Rd
hn+1(x) ηitn+1

(dx)

for i ∈ {1, 2}, and conclude

EP 1

[
Πn+1
i=1 hi(π

r
ti)
]

= EP 2

[
Πn+1
i=1 hi(π

r
ti)
]
,

which gives (5.2.3) for n+ 1, and hence completes the proof of the claim.

Since µs,ζ ∈ A6,s(µ
s,ζ), the assertion now follows from the equivalence of the

linear martingale problem and the associated SDE.
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5 Nonlinear Markov processes

(ii) The family (Ps,ζ)(s,ζ)∈R+×P0
satisfies

(i) Ps,ζ ∈ P(Ωs) and Ps,ζ ◦ (πst )
−1 = µs,ζt for all t > s,

(ii) Ps,ζ is the path law of the unique weak DDSDE solution with one-

dimensional time marginals (µs,ζt )t>s.

To prove the nonlinear Markov property, let 0 6 s 6 r 6 t and ζ ∈ P0.
Disintegrating Pr,µs,ζr with respect to πrr yields

Pr,µs,ζr (·) =

∫
Rd
p(s,ζ),(r,y)(·)µs,ζr (dy) (5.2.6)

as measures on B(Ωr), where the µs,ζr -almost surely determined family p(s,ζ),(r,y),

y ∈ Rd, of Borel probability measures on Ωr is as in Definition 5.1.1.

By Lemma 1.3.2, for µs,ζr -a.e. y ∈ Rd, p(s,ζ),(r,y) solves the µs,ζ-linearized

martingale problem from (r, δy). Hence, for any % ∈ B+
b (Rd) with

∫
Rd % dµ

s,ζ
r =

1, the measure P% ∈ P(Ωr),

P% :=

∫
Rd
p(s,ζ),(r,y) %(y) dµs,ζr (dy), (5.2.7)

solves the same linearized martingale problem with initial datum (r, % µs,ζr ).
Let n ∈ N, s 6 t1 < · · · < tn 6 r, h ∈ B+

b ((Rd)n) such that a−1 6 h 6 a
for some a > 1, and let g̃ : Rd → R+ be the bounded, µs,ζr -a.s. uniquely
determined map such that

Es,ζ
[
h(πst1 , . . . , π

s
tn)|σ(πsr)

]
= g̃(πsr) Ps,ζ − a.s.

Let g := c0g̃, where c0 > 0 is such that
∫
Rd g dµ

s,ζ
r = 1, and let Pg be as in

(5.2.7), with g replacing %, with initial condition (r, g µs,ζr ). Also, consider
θ : Ωs → R, θ := c0h(πst1 , . . . , π

s
tn), i.e. Es,ζ [θ] = 1. Set

Pθ := (θ Ps,ζ) ◦ (Πs
r)
−1.

Note that g(Rd), θ(Ωs) ⊆ [a−1c0, ac0] µs,ζr -a.s., so in particular g µs,ζr ∼ µs,ζr .
By Lemma 5.2.5 , also Pθ solves the same linearized martingale problem with
initial datum (r, gµs,ζr ), since for all A ∈ B(Rd)

Pθ ◦ (πrr)
−1(A) =

∫
Ωs

1A(πsr(w))θ(w)Ps,ζ(dw)

=

∫
Ωs

1A(πsr(w))g(πsr(w))Ps,ζ(dw) =

∫
A

g(y)µs,ζr (dy).

In particular, both one-dimensional time marginal curves (Pg ◦(πrt )−1)t>r and
(Pθ ◦ (πrt )

−1)t>r solve (µs,ζ-`FPE) from (r, g µs,ζr ). Moreover,

Pθ ◦ (πrt )
−1, Pg ◦ (πrt )

−1 6 ac0 µ
s,ζ
t , ∀t > r, (5.2.8)
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i.e. both these one-dimensional time marginal curves belong to Ar,6(µs,ζ).
Indeed, (5.2.8) can be seen as follows. For all t > r and A ∈ B(Rd),

Pθ ◦ (πrt )
−1(A) =

∫
Ωs

θ(w)1A(πst (w))Ps,ζ(dw)

6 c0a

∫
Ωs

1A(πst (w))Ps,ζ(dw) = c0aµ
s,ζ
t (A).

Similarly, by (5.2.6),

Pg ◦ (πrt )
−1(A) =

∫
Rd
p(s,ζ),(r,y)(π

r
t ∈ A)g(y)µs,ζr (dy) 6 ac0 Pr,µs,ζr (πrt ∈ A) = ac0 µ

s,ζ
t (A).

Hence by the assumption, Lemma 5.2.3 and Lemma 5.2.4 (ii)

Pg ◦ (πrt )
−1 = Pθ ◦ (πrt )

−1, ∀t > r,

and therefore for t > r and A ∈ B(Rd)

Es,ζ
[
h(πst1 , . . . , π

s
tn)1πst∈A

]
= c−1

0 Pθ ◦ (πrt )
−1(A) = c−1

0 Pg ◦ (πrt )
−1(A)

= c−1
0

∫
Ωs

p(s,ζ),(r,πsr(ω))(π
r
t ∈ A)g(πsr(ω))Ps,ζ(dω)

=

∫
Ωs

p(s,ζ),(r,πsr(ω))(π
r
t ∈ A)h(πst1(ω), . . . , πstn(ω))Ps,ζ(dω).

Here we used the σ(πsr)-measurability of Ωs 3 ω 7→ p(s,ζ),(r,πsr(ω))(π
r
t ∈ A) for

the final equality. By a monotone class-argument, (5.1.1) follows.

Since the nonlinear Markov property is always fulfilled for s = r (!), the following
corollary follows from the previous proof.

Corollary 5.2.6. Let P0 ⊆ P0 ⊆ P and let {µs,ζ}(s,ζ)∈R+×P0
be a solution flow to the

NLFPE such that µs,ζt ∈ P0 for all 0 6 s 6 t, ζ ∈ P0 (then {µs,ζ}(s,ζ)∈R+×P0
is a

solution flow) and µs,ζt ∈ P0 for all 0 6 s < t, ζ ∈ P0. Also assume µs,ζ ∈Ms,ζ
µs,ζ ,ex

for all (s, ζ) ∈ R+ ×P0.
Then there exists a nonlinear Markov process (Ps,ζ)(s,ζ)∈R+×P0

such that Ps,ζ ◦
(πst )

−1 = µs,ζt for every (s, ζ) ∈ R+ × P0 and t > s, consisting of path laws of weak
solutions to the corresponding DDSDE. Moreover, for ζ ∈ P0, Ps,ζ is the path law
of the unique weak solution to the DDSDE with one-dimensional time marginals
(µs,ζt )t>s.

A typical application of Corollary 5.2.6 is as follows: P0 = P ∩ L∞, P0 = P, one
has a solution flow {µs,ζ}(s,ζ)∈R+×P to the NLFPE with µs,ζ ∈

⋂
δ>s L

∞((δ,∞), L∞)
(also called L1 − L∞-regularization), and for every initial datum (s, ζ) ∈ R+ ×P0,
solutions to the NLFPE are unique in

⋂
T>s L

∞((s, T )×Rd). From the latter prop-

erty, one can often prove that the corresponding linearized equations (µs,ζ-`FPE)
have a unique solution in

⋂
T>s L

∞((s, T ) × Rd) from (s, ζ) ∈ R+ ×P0. Then the
extremality-assumption of the corollary is satisfied.
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5.3 Applications to nonlinear FPEs and PDEs

We consider some general and explicit cases of NLFPEs to which Theorem 5.2.1 or
Corollary 5.2.6 apply.

(i) Well-posed equations. If the NLFPE has a unique weakly continuous proba-
bility solution µs,ζ with the previously mentioned global in space integrability
condition from every initial datum (s, ζ) ∈ R+×P (or P0), and each linearized
equation (µs,ζ-`FPE) has a unique weakly continuous probability solution
from (s, ζ), Theorem 5.2.1 applies and yields the existence of a uniquely de-

termined nonlinear Markov process with one-dimensional time marginals µs,ζt ,
0 6 s 6 t, ζ ∈ P (P0).

We stress again that these strong well-posedness results can typically not be
proven for equations with Nemytskii-type coefficients.

(ii) Generalized PME. Consider

∂tu(t) = ∆β(u)− div
(
DB(u(t))u(t)

)
(5.3.1)

under the following assumptions.

(B1) β(0) = 0, β ∈ C2(R), β′ > 0.

(B2) B ∈ C1(R) ∩ Cb(R), B > 0.

(B3) D ∈ L∞(Rd;Rd),divD ∈ L2
loc(Rd), (divD)− ∈ L∞(Rd).

(B4) ∀K ⊂ R compact: ∃αK > 0 with |B(r)r − B(s)s| 6 αK |β(r) − β(s)|
∀r, s ∈ K.

For the class of distributional solutions (in PDE-sense), this equation can be
equivalently considered as a NLFPE, see Example (ii) in Section 3.1. The fol-
lowing holds: For each (s, ζ) ∈ R+×P0, P0 := P∩L∞, there is a distributional

solution us,ζ to (5.3.1) such that µs,ζt = us,ζt (x)dx is a weakly continuous prob-
ability solution in

⋂
T>s L

∞((s, T ) × Rd), and these solutions have the flow

property in P0. Moreover, µs,ζ is the unique weakly continuous probability
solution from (s, ζ) to (µs,ζ-`FPE) in

⋂
T>s L

∞((s, T ) × Rd) ⊇ As,6(µs,ζ).
For these statements, see [4, Thm.2.2] and [7, Cor.4.2], respectively.

Thus, Theorem 5.2.1 applies and gives a nonlinear Markov process {Ps,ζ}s>0,ζ∈P0

with one-dimensional time marginals densities us,ζt , where Ps,ζ is the path law
of a restricted-unique weak solution to the associated DDSDE

dXt = B
(
ut(Xt)

)
D(Xt))dt+

 
2β(ut(Xt))

ut(Xt)
dBt, LXt(dx) = ut dx, t > s.

Bottomline: The nonlinear PDE-solutions us,ζ have a probabilistic represen-
tation as the one-dimensional time marginal densities of a nonlinear Markov
process, which consists of solutions to the associated DDSDE.
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(iii) Classical PME, measure-valued initial data. For the classical porous media
equation

∂tu = ∆
(
|u|m−1u

)
, m > 1,

it was shown in [16] that for any initial datum (s, ζ) ∈ R+ × P, there is a
unique weakly continuous distributional (in PDE-sense) probability solution
us,ζ in

⋂
T>τ>s L

∞((τ, T ) × Rd). In fact, it is shown that us,ζ is even L1-
continuous on (s,∞). Clearly, this uniqueness implies the flow property for

the solutions t 7→ us,ζt (x)dx to the corresponding NLFPE, see Example (i) in
Section 3.1. For ζ = δx0

, us,ζ is the explicit Barenblatt solution,

u
s,δx0
t (x) = (t− s)−α

ï(
C − k|x− x0|2(t− s)−2β

)
+

ò 1
m−1

, t > s,

where α = d
d(m−1)+2 , β = α

d , k = α(m−1)
2md , f+ := max(f, 0), and C = C(m, d) >

0 is chosen such that
∫
Rd u

s,ζ
t (x)dx = 1 for all t > s. The corresponding

McKean-Vlasov equation is

dXt =
»

2ut(Xt)m−1dBt, LXt = ut(x)dx, t > s, LXs = ζ. (5.3.2)

Since assumptions (B1)-(B4) are satisfied, for ζ ∈ P∩L∞ we have uniqueness
of (µs,ζ-`FPE) from (s, ζ) in

⋂
T>s L

∞((s, T ) × Rd) (compare (ii) above).
Thus, Corollary 5.2.6 applies with P0 = P ∩ L∞ and P0 = P, and yields a
nonlinear Markov process (Ps,ζ)(s,ζ)∈R+×P consisting of path laws Ps,ζ of weak

solutions to (5.3.2) with one-dimensional time marginals densities us,ζt .

Remark 5.3.1. Corollary 5.2.6 first only implies that Ps,ζ is uniquely deter-
mined if ζ ∈ P ∩ L∞. However, it can be shown from the formula for the
finite-dimensional marginals in Proposition 5.1.4 that the entire nonlinear
Markov process {Ps,ζ}s>0,ζ∈P is uniquely determined by {us,ζ}s>0,ζ∈P.

For further applications, including the 1D-Burgers equation and the 2D Navier–
Stokes equations in vorticity form, please see [18].

5.3.1 p-Laplace equation

The main reference for the subsequent content is [3]. As a particularly interesting
example to which the above theory applies, consider the p-Laplace equation

∂

∂t
u(t, x) = div(|∇u(t, x)|p−2∇u(t, x)), (t, x) ∈ (0,∞)× Rd, (5.3.3)

where p > 2 (the equation is meaningful for p > 1, but here we only consider
p > 2). It may be considered a nonlinear generalization of the heat equation,
which is recovered for p = 2. There are explicitly given solutions, called Barenblatt
solutions, given by

wy(t, x) = t−k
(
C1 − qt−

kp
d(p−1) |x− y|

p
p−1
) p−1
p−2

+
, (t, x) ∈ (0,∞)× Rd, (5.3.4)

65



5 Nonlinear Markov processes

where k :=
(
p− 2 + p

d

)−1
, q := p−2

p

(
k
d

) 1
p−1 , C1 ∈ (0,∞) is the unique constant such

that |wy(t)|L1(Rd) = 1 for all t > 0. Here ”solution” is understood in the usual weak
sense, i.e. both sides of the equation coincide as Sobolev functions. One can easily

show wy(t, x)dx
t→0−−−→ δy weakly.

Fokker–Planck reformulation. At first sight, the p-Laplace equation is not of Fokker–
Planck type. However, it was shown in [3] the following result. Its proof is obtained
by observing that for u = wy the RHS of (5.3.5) equals the RHS of (5.3.3) in
distributional sense.

Proposition 5.3.2. The Barenblatt solution t 7→ wy(t, x)dx is a weakly continuous
probability solution with initial datum δy to the nonlinear Fokker–Planck equation

∂tu = ∆
(
|∇u|p−2u

)
− div

(
∇
(
|∇u(t, x)|p−2

)
u
)
. (5.3.5)

The coefficients aij(u, x) = δij |∇u(x)|p−2 and bi(u, x) = ∂i(|∇u|p−2) are defined

on W 1,1
loc (Rd)×Rd. Note that this is a new type of nonlinear FP-equation compared

to what we considered before, since now the dependence of the solution is not
pointwise via its density, but pointwise via the gradient of its density (which means
that, as a function of u, the coefficients depend not pointwise on u, but on its values
in a neighborhood of u(x)).

The corresponding McKean–Vlasov SDE is

dX(t) = ∇(|∇u(t,X(t))|p−2)dt+
√

2 |∇u(t,X(t))|
p−2
2 dW (t), t > 0,(5.3.6)

LX(t) = u(t, x)dx, t > 0,

and we have the following superposition result. Note that while strictly speaking
the nonlinear superposition principle was not formulated for gradient-dependent
coefficients, one can simply use the linear result by first freezing wy (that is, ∇wy)
in the coefficients.

Proposition 5.3.3. There exists a probabilistically weak solution (Xy)t>0 to the above
McKean–Vlasov SDE such that LXyt (dx) = wy(t, x)dx for all t > 0 and LXy0 (dx) =
δy(dx).

This result also holds for general solutions to (5.3.3) which satisfy certain Sobolev
regularity assumptions. Here, we focus solely on the Barenblatt solutions.

p-Brownian motion. Set

P0 := {wy(δ, x)dx, y ∈ Rd, δ > 0} ⊆ P

(note in particular {δy, y ∈ Rd} ⊆ P0, where we abuse notation in writing wy(0, x)dx =
δy), i.e. ”P0= all possible distributions attained by Barenblatt solutions”. Note
that for ζ ∈ P0, there is a unique pair (y, δ) such that ζ = wy(δ, x)dx. Clearly, for
ζ = wy(δ, x)dx,

(µs,ζt )t>s := (wy(δ + t− s, x)dx)t>s

is a weakly continuous probability solution to (5.3.5) with initial datum (s, ζ). That
{µs,ζ}s>0,ζ∈P0 is a solution flow in P0 is obvious. We have the following result.
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Theorem 5.3.4. Let d > 2, p > 2. There is a nonlinear Markov process {Ps,ζ}s>0,ζ∈P0

such that Ps,ζ has marginals µs,ζt , t > s, and is the path law of a weak solution Xs,ζ

to (5.3.6).

Moreover, each Xs,ζ is the unique weak solution to (5.3.6) with marginals µs,ζt , t >
s. In particular, this nonlinear Markov process is uniquely determined by the equa-
tion (5.3.6) and the Barenblatt solutions.

Furthermore, since in the present case the coefficients are not explicitly time-
dependent, we find:

Lemma 5.3.5. (Ps,ζ)s>0,ζ∈P0
is time-homogeneous, i.e. Ps,ζ = P0,ζ ◦ (Π̂s)

−1 for all
(s, ζ) ∈ [0,∞)× P0, where

Π̂s : C([0,∞),Rd)→ C([s,∞),Rd), Π̂s : (ω(t))t>0 7→ (ω(t− s))t>s. (5.3.7)

Moreover, for ζ = wy(δ, x)dx, we have P0,ζ = P0,δy ◦ (Π̃0
δ)
−1, where we define

Π̃s
r : C([s,∞),Rd)→ C([s,∞),Rd) via

Π̃s
r : ω(t)t>s 7→ ω(t+ r)t>s. (5.3.8)

As a consequence of this lemma, the nonlinear Markov process {Ps,ζ}s>0,ζ∈P0
is

uniquely determined by {Py}y∈Rd , where we set Py := P0,δy .

Definition 5.3.6. Let d > 2, p > 2. We call {Py}y∈Rd p-Brownian motion, P0 p-
Wiener measure, and any stochastic process Xy with law Py a p-Brownian motion
with start in y.

This definition is consistent with the classical case p = 2, where the Barenblatt
solutions are replaced by the heat kernel and the corresponding (classical) Markov
process is Brownian motion (”2-Brownian motion”).

Remark 5.3.7. We point out that for p > 2, unlike in the case p = 2, the mea-
sures Py are not given as the image measure of P0 under the translation map
Ty : C([0,∞),Rd)→ C([0,∞),Rd), Ty(ω) := ω + y. This can be seen, for instance,
from the fact that P0 ◦(Ty)−1 is not a solution path law of the McKean–Vlasov SDE
(5.3.6)–(5.3.7) with initial condition δy.

A crucial restricted uniqueness result for a linear PDE. The proof of Theorem
5.3.4 follows by applying Corollary 5.2.6, for which we aim to show that for every
(s, ζ) ∈ [0,∞) × P0, ζ = wy(δ, x)dx, where P0 := {wy(δ, x)dx, δ > 0}, the µs,ζ-
linearized FPE

∂tu(t, x) = ∆
(
|∇wy(δ+t−s, x)|p−2u(t, x)

)
−div

(
∇
(
|∇wy(δ+t−s, x)|p−2

)
u(t, x)

)
with initial condition u(t, x)dx

t→s−−−→ ζ has a unique solution u : (s,∞) × Rd → R
under the restriction that there is some C > 0 such that 0 6 u(t, x) 6 Cwy(δ +
t − s, x) dx-a.s. for every t > s. Here, solution is understood in the sense that
t 7→ u(t, x)dx is a weakly continuous probability solution to the above equation in
the sense of Fokker–Planck equations.

Indeed, this is proven in [3]. Note that this is a restricted uniqueness result for
a linear PDE with degenerate diffusion- and drift-coefficient (wy and hence ∇wy is
compactly supported on each [0, T ]× Rd).
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