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A. MANIFOLDS

This course is about manifolds. An m-manifold is a space
that looks locally like Euclidean space Rm.
Examples of manifolds include a circle S1, a sphere S2 or
a torus T 2 = S1×S1 or any surface in R3. These generalize
for instance to an m-sphere Sm ⊂ Rm+1 or an m-torus T m =

S1 × · · · × S1.
In multivariable calculus, one studies (smooth) m-sub-
manifolds of Rn; these have several equivalent characteri-
zations (locally being level sets or images of smooth func-
tions). These are the motivating examples of (smooth)
manifolds. Indeed, we will later see that any manifold can
be embedded as a submanifold of some (high-dimensional)
Rn. But it is important to give an abstract definition of
manifolds, since they usually don’t arise as submanifolds.
One important feature of manifolds is that they are spaces
on which one can do analysis (derivatives, integrals, etc.).
This means we are talking here not simply about topologi-
cal manifolds, but about smooth (differentiable) manifolds.
This is a distinction we will explain soon.

A1. Topological manifolds

Definition A1.1. A topology [DE: Topologie] on a set X is a
collectionU of subsets of X (called the open [DE: offenen]
subsets) such that

• ∅, X ∈ U,
• U,V ∈ U =⇒ U ∩ V ∈ U,
• {Uα} ⊂ U =⇒

⋃
α Uα ∈ U.

All other topological notions are defined in terms of open
sets.

Definition A1.2. A subset A ⊂ X is closed [DE:
abgeschlossen] if its complement X r A is open.

Definition A1.3. Any subset Y ⊂ X naturally becomes a
topological space with the subspace topology [DE: Unter-
raumtopologie]: {U ∩ Y : U ⊂ X open}. That is, the open
sets in Y are exactly the interestions of Y with open sets
in X.

Definition A1.4. A space X is connected [DE: zusammen-
hängend] if∅ and X are the only subsets that are both open
and closed. A space is compact [DE: kompakt] if every
open cover has a finite subcover. (If we talk about a subset
Y ⊂ X being connected or compact, etc., we mean with
respect to the subspace topology.)

Definition A1.5. A map f : X → Y between topologi-
cal spaces is continuous [DE: stetig] if the preimage of
any open set in Y is open in X. A continuous bijection
f : X → Y whose inverse is also continuous is called
a homeomorphism [DE: Homöomorphismus] – an equiv-
alence of topological spaces.

Definition A1.6. Usually, one specifies a topology not by
listing all open sets, but by giving a base [DE: Basis] B.

This is a collection of “basic” open sets sufficient to gener-
ate the topology: an arbitrary U ⊂ X is defined to be open
if and only if it is a union of sets from B. Equivalently, U
is open if for each x ∈ U there is a basic open set B with
x ∈ B ⊂ U. The requirements on B to form a base are

(1) that B covers X (meaning that each x ∈ X is in some
B ∈ B), and

(2) that intersections B1 ∩ B2 of two basic open sets are
open, that is, for any x ∈ B1 ∩ B2, there exists B3 ∈ B

with x ∈ B3 ⊂ B1 ∩ B2.

These conditions are familiar from metric spaces (X, d),
where the open balls Bε(x) := {y : d(x, y) < ε} form
a base for the metric topology. The topological spaces
that will arise for us are all metrizable, meaning the topol-
ogy arises from some metric. In particular, the standard
topology on Rn comes, of course, from the Euclidean in-
ner product (scalar product) 〈x, y〉 = x · y :=

∑
xiyi via

the metric d(x, y) := |x − y| :=
√
〈x − y, x − y〉. (Note

that, following a standard convention in differential geom-
etry, we use upper indices for the components of a point
x = (x1, . . . , xm) ∈ Rm.)

Definition A1.7. A space X is Hausdorff [DE: Haus-
dorff’sch] if any two distinct points x , y ∈ X have disjoint
(open) neighborhoods. It is regular [DE: regulär] if given a
nonempty closed set A ⊂ X and a point x ∈ XrA, there are
disjoint (open) neighborhoods of A and x. (These are just
two examples of the many “separation axioms” in point-set
topology.)

Definition A1.8. A space X is second countable [DE: dem
zweiten Abzählbarkeitsaxiom genügend] if there is a count-
able base for the topology. It is separable [DE: separabel]
if it has a countable dense subset.

Metric spaces are Hausdorff and regular (take metric
neighborhoods of radius d(x, A)/2). Euclidean space is
second countable (take balls with rational centers and
radii). In general, a metric space is second countable if
and only if it is separable. The importance of these notions
is clear from the Urysohn metrization theorem, which says
that X is separable and metrizable if and only if it is Haus-
dorff, regular and second countable.
We will later need the following two properties of Haus-
dorff spaces.
Exercise A1.9. A space X is Hausdorff if and only if the
diagonal ∆ :=

{
(x, x) : x ∈ X

}
is a closed subset of X × X.

Exercise A1.10. If X is Hausdorff and K ⊂ X is compact,
then K is a closed subset of X.

Definition A1.11. We say a space M is locally homeo-
morphic [DE: lokal homöomorph] to Rm if each p ∈ M has
an open neighborhood U that is homeomorphic to some
open subset of Rm. If ϕ : U → ϕ(U) ⊂ Rm denotes such a
homeomorphism, then we call (U, ϕ) a (coordinate) chart
[DE: Karte] for M. An atlas [DE: Atlas] for M is a collec-
tion

{
(Uα, ϕα)

}
of coordinate charts which covers M, in the

sense that
⋃

Uα = M.

Clearly we can rephrase the definition to say M is locally
homeomorphic to Rm if and only if it has an atlas of charts.
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Less obvious (but an easy exercise, since an open ball in
Rm is homeomorphic to Rm) is that it is equivalent to re-
quire each p ∈ M to have a neighborhood homeomorphic
to Rm.
Although one might expect this to be a good topological
definition of an abstract manifold, it turns out that there
are some pathological examples that we would like to rule
out. Certain properties from point-set topology are not au-
tomatically inherited under local homeomorphisms. For
instance, examples like the line R with the origin doubled
(or with all x ≥ 0 doubled) fail to be Hausdorff. The “long
line” (obtained by gluing uncountably many unit intervals)
fails to be second countable – it is sequentially compact
(every sequence has a convergent subsequence) but not
compact, although those notions are equivalent for metric
spaces. The “Prüfer surface” is separable but not second
countable, so again cannot be metrizable. although again
those notions are equivalent for metric spaces. (Note there
are also much weirder examples, for instance in papers of
Alexandre Gabard.) For technical reasons, we also prefer
manifolds to have at most countably many components, as
is guaranteed by second countability.
Thus we are led to the following:

Definition A1.12. A topological m-manifold [DE: topol-
ogische m-Mannigfaltigkeit] is a second-countable Haus-
dorff space M = Mm that is locally homeomorphic to Rm.

Regularity then follows, ensuring that our manifolds are
metrizable spaces. Indeed, we will later put a (Rieman-
nian) metric on any (smooth) manifold. It is also straight-
forward to check various other local properties: A topo-
logical manifold M is locally connected, locally compact,
normal and paracompact (defined later when we need it).
Being separable and locally compact, it is also globally the
union of countably many compact subsets.
Note: For m , n, it is easy to see there is no diffeomor-
phism Rm → Rn It is also true that there is no homeomor-
phism, but this requires the tools of algebraic topology like
homology theory. Any Rm is contractible, so they all have
the same (trivial) homology. The trick is to first remove a
point. Then Rm r {0} deformation retracts to Sm−1, and
spheres of different dimension have different homology.
This was the start of topological dimension theory, and
shows that every (nonempty) manifold has a well-defined
dimension.
Examples A1.13.

• Rm is an m-manifold (with a single chart).
• An open subset U ⊂ Mm of an m-manifold is itself

an m-manifold (restricting charts to U).
• Any smooth surface M2 ⊂ R3 is a 2-manifold. (Get

a chart around p ∈ M by projecting orthogonally to
TpM.)
• Other surfaces – like polyhedral surfaces – are also

topological manifolds.
• More generally, any smooth m-submanifold in Rn is

an m-manifold. (We will consider such examples in
general later.)
• RPm := Sm/± = {lines through 0 in Rm+1} is an m-

manifold called real projective space.
• Mm × Nn is an (m + n)-manifold (using product

charts).
• For any smooth surface M2 ⊂ R3, the tangent bundle

T M = {(p, v) : p ∈ M, v ∈ TpM} is a 4-manifold.

One of our first tasks will be to define TpM for an abstract
smooth manifold Mm; in general we will find that it is a m-
dimensional vector space and that these can be put together
to form a 2m-manifold, the tangent bundle.
In some cases it is important to consider also manifolds
with boundary, modeled on the halfspace

Hm :=
{
(x1, x2, . . . , xm) ∈ Rm : x1 ≤ 0

}
,

whose boundary is ∂Hm = {x1 = 0} � Rm−1.

Definition A1.14. An m-manifold with boundary [DE: m-
Mannigfaltigkeit mit Rand] is then a second-countable
Hausdorff space locally homeomorphic to Hm (meaning
that each point has a neighborhood homeomorphic to some
open subset of Hm). If a point p ∈ M is mapped to the
boundary in one chart, then this is true in every chart. Such
points form the boundary [DE: Rand] ∂M ⊂ M of M; it
is an (m − 1)-manifold (without boundary, and perhaps
empty). The complement M r ∂M is called the interior
[DE: Inneres] and is an m-manifold (without boundary).

We will use manifolds with boundary later when we study
integration and Stokes’ theorem. Until then, we will ba-
sically neglect them, with the understanding that all our
theory extends in the “obvious” way. The following termi-
nology is standard even if confusing at first: a closed mani-
fold [DE: geschlossene Mannigfaltigkeit] means a compact
manifold without boundary.
Let us look at the lowest dimensions. A 0-manifold is a
countable discrete set. Equivalently, we can say that the
only connected 0-manifold is a point. In general, of course,
any manifold is the countable union of its connected com-
ponents, so it makes sense to classify connected manifolds.
It is not hard to show that any connected 1-manifold is
(homeomorphic to) either R1 or S1. If we allow manifolds
with boundary, there are just two more examples: the com-
pact interval I = [0, 1], and the ray or half-open interval
H1.

2024 October 14: End of Lecture 1

While the complete classification of noncompact surfaces
is known, we will only consider the compact case. We
have seen the examples S2, T 2 and RP2. Further examples
can be obtained as connect sums: the connect sum M#N
of two surfaces is obtained by removing an open disk from
each and then gluing them along the resulting boundary
circles. It turns out that any connected closed surface is
either an orientable surface Σg of genus g (the connect sum
of g tori) or a nonorientable surface Nh (the connect sum
of h projective planes). If we allow compact surfaces with
boundary, then what we get is these examples with some
number k of open disks removed, denoted Σg,k or Nh,k.
The uniformization theorem, a classical result in complex
analysis and Riemann surface theory, implies that any sur-
face admits a metric of constant Gauss curvature. By the
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Gauss–Bonnet theorem, the sign of this Gauss curvature
agrees with the sign of the Euler characteristic of the sur-
face. Thus the sphere and the projective plane have spher-
ical (K ≡ 1) metrics, and the torus and Klein bottle have
Euclidean (flat, K ≡ 0) metrics, while all other closed sur-
faces have hyperbolic (K ≡ −1) metrics.
Guided by this, Bill Thurston conjectured a method to
understand compact 3-manifolds (with boundary). In
2003, Grigory Perelman proved this “geometrization con-
jecture”, establishing that any 3-manifold can be cut into
pieces, each of which admits one of eight standard geome-
tries. There is interesting work remaining to be done to
better understand the case of hyperbolic 3-manifolds.
In dimensions four and higher, there is in some sense no
hope of classifying manifolds. Given any finite group pre-
sentation, one can build a closed 4-manifold with that fun-
damental group. Since the group isomorphism problem is
known to be undecidable, it is impossible in general to de-
cide whether 4-manifolds are homeomorphic. Much inter-
esting research thus restricts attention to the case of simply
connected manifolds (with trivial fundamental group).
In certain other ways, higher dimensions are easier to un-
derstand. One reason is that two generic 2-disks will have
empty intersection in dimensions five and above. Thus, for
instance, the Poincaré conjecture was first proved in these
dimensions, while the original conjecture in three dimen-
sions had to wait for Perelman’s result.

A2. Smooth structures

If (U, ϕ) and (V, ψ) are two charts for a manifold Mm, then

ψ ◦ ϕ−1 : ϕ(U ∩ V)→ ψ(U ∩ V)

is a homeomorphism between open sets in Rm, called a
change of coordinates [DE: Kartenwechsel] or transition
function. The inverse homeomorphism is of course ϕ◦ψ−1.
Since the transition functions are maps between Euclidean
spaces, we know how to test how smooth they are. Sup-
pose U ⊂ Rm is open and f : U → Rn. To say f is C0

just means that it is continous. If f is differentiable at each
p ∈ U, then its derivative is a function D f : U → Rn×m.
We say f is C1 if D f is continuous. By induction, we say
f is Cr if D f is Cr−1, that is, if Dr f is continuous. If f has
(continuous) derivatives of all orders, we say it is C∞. If
a C∞ map f is real analytic [DE: reell-analytisch], mean-
ing that its Taylor series around any p ∈ U converges to f ,
then we say f is Cω.

Definition A2.1. Fix r ∈ {0, 1, 2, . . . ,∞, ω}. We say
two charts (U, ϕ) and (V, ψ) for a manifold Mm are Cr-
compatible if the transition functions ψ ◦ ϕ−1 and ϕ ◦ ψ−1

are Cr maps. (They are then inverse Cr-diffeomorphisms.)
A Cr-atlas [DE: Cr-Atlas] for M is a collection of Cr-
compatible coordinate charts which covers M. A Cr-
structure [DE: Cr-Struktur] on M is a maximal Cr-atlas,
that is an atlas U =

{
(Uα, ϕα)

}
such that any coordi-

nate chart (V, ψ) which is compatible with all the (Uα, ϕα)
is already contained in U. A Cr-manifold [DE: Cr-
Mannigfaltigkeit] is a topological manifold Mm with a

choice of Cr-structure. A chart for a smooth manifold will
mean a chart in the given smooth structure (unless we ex-
plicitly refer to a “topological chart”).

Of course the case r = 0 is trivial: any atlas is C0 and the
C0-structure is the set of all possible topological charts. (In
this case, of course, one should use the term “homeomor-
phism” instead of “C0-diffeomorphism”.)
This course is about smooth manifolds, where we use the
word “smooth” to mean C∞. When we say “manifold”
we will mean smooth manifold unless we explicitly say
otherwise. Of course many of our results will be valid even
for lower degrees of smoothness (usually C1 or C2 or C3

would suffice) but we will not attempt to keep track of this.

Lemma A2.2. Any Cr-atlas is contained in a unique max-
imal one.

Proof. Given an atlas U =
{
(Uα, ϕα)

}
, let V be the col-

lection of all charts (V, ψ) that are compatible with every
(Uα, ϕα). We just need to show that V is a Cr-atlas, that
is that any charts (V1, ψ1) and (V2, ψ2) are compatible with
each other. But any p ∈ V1 ∩ V2 is contained in some Uα,
and on ψ1

(
V1 ∩ V2 ∩ Uα

)
we can write

ψ2 ◦ ψ
−1
1 =

(
ψ2 ◦ ϕ

−1
α

)
◦
(
ϕα ◦ ψ

−1
1

)
. �

At the end of this proof, we implicitly use three properties:

• The composition of two Cr maps is Cr.
• The restriction of a Cr map to an open subset is Cr.
• A map that is Cr is some neighborhood of each point

in U is Cr on U.

Without getting into formal details, these properties mean
that the class of Cr diffeomorphisms form a pseudogroup
[DE: Pseudogruppe] (of homeomorphisms on the topolog-
ical space Rm).
Although we have only defined Cr structures, other kinds
of structures on manifolds arise from other pseudogroups.
For instance, a projective structure [DE: projektive Struk-
tur] or a Möbius structure [DE: Möbius-Struktur] on M
arises from an atlas where the transtion functions are all
projective transformations or all Möbius transformations
(respectively). An orientation [DE: Orientierung] on M
arises from an atlas where all transition functions are
orientation-preserving. (We will return to this later. Note
that it is easy to tell if a diffeomorphism is orientation-
preserving, using the sign of the Jacobian determinant; for
homeomorphisms one needs homology theory.)
Given a Cr-structure on any manifold, for any s ≤ r, by the
lemma it extends to a unique C s-structure. On the man-
ifold Rm, the standard Cr structure arises from the atlas{
(Rm, id)

}
consisting of a single chart. If we let Ur denote

the collection of all charts Cr-compatible with this one,
then we have

U0 ⊃ U1 ⊃ U2 ⊃ · · · ⊃ U∞ ⊃ Uω.

The point of a smooth structure is to know which mappings
are smooth. Suppose f : Mm → Nn is a (continuous) map
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between two smooth manifolds. Given p ∈ M, we can find
(smooth) charts (U, ϕ) around p ∈ M and (V, ψ) around
f (p) ∈ N. Then the composition

ψ ◦ f ◦ ϕ−1 : ϕ
(
U ∩ f −1(V)

)
→ Rn

is called the expression of f in these coordinates. (Writ-
ing (x1, . . . , xm) for a typical point in ϕ(U) ⊂ Rm and
(y1, . . . , yn) for a typical point in ψ(V) ⊂ Rn, then we can
think of ψ ◦ f ◦ ϕ−1 very explicitly as n real-valued func-
tions, giving the y j as functions of (x1, . . . , xm).)
Now it is easy to define smoothness:

Definition A2.3. The map f is smooth [DE: glatt] if for
each p we can find charts (U, ϕ) and (V, ψ) as above such
that ψ ◦ f ◦ϕ−1, the expression of f in these coordinates, is
smooth (as a map between Euclidean spaces). (If M and N
are only Cr-manifolds, then it makes sense to ask whether
f : M → N is C s for s ≤ r but not for s > r.) A diffeomor-
phism [DE: Diffeomorphismus] f : M → N between two
smooth manifolds is a homeomorphism such that both f
and f −1 are smooth. The set of all smooth maps M → N
is denoted by C∞(M,N); we write C∞(M) := C∞(M,R).

Exercise A2.4. If f : Mm → Nn is smooth, then its ex-
pression ψ ◦ f ◦ ϕ−1 in any (smooth) coordinate charts is
smooth.

Note two special cases: if M = Rm (of course with the
standard smooth structure), then we can take ϕ = id and
thus consider ψ ◦ f ; if N = Rn then we can take ψ =

id and consider f ◦ ϕ−1. For a map f : Rm → Rn, we
take ϕ = id and ψ = id and see that our new definition of
smoothness agrees with the one we started with for maps
between Euclidean spaces.
The basic constructions of new manifolds from old – open
subsets and products – can be adapted to the smooth set-
ting.
If U ⊂ Mm is an open subset of a smooth manifold, then we
can restrict the smooth structure on M to a smooth struc-
ture on U (which we already know is a topological man-
ifold). In particular, each chart (V, ψ) for M gives a chart
(V∩U, ψ|V∩U) for U. (If we talk about a smooth map on an
open subset U of a smooth manifold M, then we implic-
itly mean smooth with respect to this restricted structure.)
Suppose we have a cover

{
Uα

}
of M and a map f : M → N.

Then f is smooth if and only if its restriction to each Uα

is smooth. (This is a version of the pseudogroup property
above.)
If Mm and Nn are smooth manifolds, then it is a straight-
forward exercise to put an induced smooth structure on
the manifold M × N. (Hint: Use only product charts
(U × V, ϕ × ψ) obtained from smooth charts (U, ϕ) and
(V, ψ).) The two projection maps from M × N to M and N
are smooth maps.

A3. Exotic smooth structures

Suppose h : Mm → Nm is a homeomorphism between
topological manifolds (so that M and N are really the

“same” topological manifold). Then h can be used to
move other structures between M and N. A trivial exam-
ple would be a real-valued function f : N → R; it can be
“pulled back” to give the real-valued function f ◦ h on M.
Of interest to us is the case of a Cr-structure U on N (a
maximal atlas). We can use the homeomorphism h to pull
it back to give a Cr-structure h∗(U) on M: the pull-back of
a chart (U, ϕ) ∈ U is the chart

(
h−1(U), ϕ◦h

)
for M. Almost

by definition, h : M → N is then a Cr-diffeomorphism
from

(
M, h∗(U)

)
to (N,U).

Since M and N are homeomorphic, they are really the same
topological manifold, and we might as well be considering
self-homeomorphisms h : M → M. If h = id then clearly
h∗(U) = U; more generally this is true any time h is a dif-
feomorphism from the smooth manifold (M,U) to itself.
But suppose h is a homeomorphism that is not a diffeo-
morphism. Then h∗(U) is a distinct smooth structure on
the manifold M. Consider a couple of examples on the
line M = R, starting with its standard smooth structure
U; the pull-back structure h∗(U) is the one generated by
the single coordinate chart (R, h). If h : x 7→ x3 then h is
smooth but its inverse is not, so with respect to h∗(U) it is
easier for maps into M to be smooth, but harder for maps
from M to be smooth. (The reverse is true of course if we
start with x 7→ 3

√
x.) If on the other hand h : x 7→ 2x + |x|,

then neither h nor its inverse is smooth. (Note that in all
these examples, the meaning of smoothness changes only
near 0.)
Such examples are weird, but in fact they are all trivial.
As we noted above, h is always a diffeomorphism from(
M, h∗(U)

)
to (M,U). Thus the two smooth manifolds

are diffeomorphic to each other – they are really the same
smooth manifold. We have merely put on strange eye-
glasses – the map h – to relabel the points of M.
More interesting is the question of existence of “exotic”
smooth structures – can two different (nondiffeomorphic)
smooth manifolds have a homeomorphism between them
(meaning that their underlying topological manifolds are
the same). There are still many interesting open questions
here, especially in dimension 4. The following facts are
known:

• Up to diffeomorphism, there is a unique smooth
structure on any topological manifold Mm in dimen-
sion m ≤ 3. Up to diffeomorphism, there is a unique
smooth structure on Rm for m , 4.

• The Hauptvermutung (known by that name even
in English) of geometric topology (formulated 100
years ago) suggested that every topological manifold
should have a unique piecewise linear (PL) structure
– essentially given combinatorially by a triangula-
tion – and a unique smooth structure. This is now
known to be false.

• Every smooth manifold has a (PL) triangulation. For
every dimension m ≥ 4, there are topological m-
manifolds that admit no triangulation – and in par-
ticular no PL or smooth structures. (For m = 4 this
has been known since the 1980s, but for m > 4 it
was just proven in 2013!)
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• There are uncountably many different smooth struc-
tures on R4. It is unknown if there is any exotic
smooth structure on S4.

• In higher dimensions, some things get easier. In
dimensions m ≥ 7, for instance, there are exotic
spheres Sm, but these form a well-understood finite
group (e.g., there are 28 for m = 7). In general, the
differences between smooth and PL manifolds (and
to some extent between PL and topological mani-
folds) can be analyzed for m ≥ 5 by means of alge-
braic topology.

• For compact, simply connected topological 4-mani-
folds, Freedman showed how to use invariants from
algebraic topology to check when they are homeo-
morphic. In most (but not all) cases we know which
of these topological manifolds admit smooth struc-
tures; it is not known how to classify the smooth
structures when they do exist.

Especially since we know there are exotic spheres in cer-
tain dimensions, it is important to say what we mean by
the standard sphere Sm as a smooth manifold. The “right”
answer is that it inherits a smooth structure as a smooth
submanifold of Rm+1, but since we haven’t developed that
theory yet, we use explicit charts. Any “obvious” atlas will
give the same standard smooth sphere, for instance the two
charts of stereographic projection:

U± = Sm r {±em+1}, ϕ±(x, z) =
x

1 ∓ z
, x ∈ Rm, z ∈ R,

or the 2m + 2 charts of orthogonal projection:

U± j =
{
x ∈ Sm ⊂ Rm+1 : sgn x j = ±1

}
,

ϕ± j(x) =
(
x1, . . . , x̂ j, . . . , xm+1).

It is a good exercise to check that all these charts are C∞-
compatible with each other.
With our basic constructions, we then get many further
examples of smooth manifolds, like the m-torus T m =

S1 × · · · × S1 (a product of circles) or the n2-dimensional
matrix group GL(Rn) ⊂ Rn×n (an open subset).

2024 October 15: End of Lecture 2

A4. Tangent vectors and tangent spaces

We usually think of the tangent space TpR
n at a point

p ∈ Rn as a copy of the vector space Rn; a vector v ∈ TpR
n

can be viewed intuitively as an arrow from p to p + v.
(Technically, a tangent vector should know where it is
based, so we could set TpR

n =
{
(p, v) : v ∈ Rn}. We

will soon introduce a different formal definition, valid also
for abstract smooth manifolds. But still, the tangent space
to Rn is naturally isomorphic to Rn and we often implicitly
make this identification.)
If γ is a smooth curve through p := γ(0) in Rn, then its
velocity γ′(0) is best viewed as a vector in TpR

n. If Mm is
an m-submanifold through p ∈ Rn, then the tangent space

TpMm is an m-dimensional linear subspace of TpR
n, con-

sisting of all velocity vectors to curves lying in M.
For an abstract manifold Mm, its tangent space TpMm

should still be the collection of velocity vectors to curves
through p ∈ M. But of course, there are always many
curves with the same tangent vector. One approach would
be to define tangent vectors as equivalence classes of
curves, but when are two curves equivalent? One could
say: “when they agree to first order”, but this begs the
question.
A good approach is to think about what we use tangent
vectors for: to take directional derivatives! If g : Rn → R
is a real-valued function, and γ is a curve through p = γ(0)
with velocity v = γ′(0) ∈ TpR

n there, then the directional
derivative of g is the derivative along γ:

∂vg = Dpg(v) =
d
dt

∣∣∣∣∣
t=0

(g ◦ γ).

Let us think about ∂v as a map taking g to the real number
∂vg ∈ R. This is linear:

∂v(g + λh) = ∂vg + λ∂vh

and satisfies the Leibniz product rule:

∂v(gh) = (∂vg)h(p) + (∂vh)g(p).

Such a map is called a derivation [DE: Derivation]. Fur-
thermore, it is local in the sense that ∂vg only depends
on values of g in an arbitrarily small neighborhood of p.
A fact we will check later is that there are no other local
derivations at p ∈ Rn besides these directional derivatives.
Thus we can use this as the definition of tangent vector.
So fix a point p in a (smooth) manifold Mm. What is the
right domain for a derivation (think of a directional deriva-
tive) at p ∈ M? Consider the class

C =
⋃
U3p

C∞(U)

of all real-valued functions g defined on some open neigh-
borhood of p. If two functions agree on some neighbor-
hood, then they must have the same derivatives at p, so we
consider them to be equivalent. More precisely, g : U → R
is equivalent to h : V → R if there is some open W 3 p
(with W ⊂ U ∩ V) such that g|W = h|W . An equiva-
lence class is called a germ [DE: Keim] (of a smooth func-
tion) at p. The set of germs at p is the quotient space
C/∼ =: C∞(p). If g is a function on a neighborhood of p,
we often write simply g for its germ (which might more
properly be called [g]).
Note that if g ∈ C∞(p) is a germ, we can talk about its
value g(p) ∈ R at p, but not about its value at any other
point. (For M = Rm, a germ g at p also encodes deriva-
tives of all orders at p – that is, the Taylor series of g –
but also much more information, since g is not necessarily
analytic.)
The set C∞(p) of germs is an (infinite dimensional) alge-
bra over R, that is, a vector space with multiplication. (Ex-
ercise: check that multiplication of germs makes sense,

5



J.M. Sullivan, TU Berlin A: Manifolds Diff Geom II, WS 2024/25

etc.) We now define a tangent vector [DE: Tangentialvek-
tor] Xp at p ∈ M to be a derivation on this algebra. That is,
Xp : C∞(p)→ R is a linear functional:

Xp(g + λh) = Xpg + λXph

satisfying the Leibniz rule:

Xp(gh) = (Xpg)h(p) + (Xph)g(p).

We let TpM denote the tangent space [DE: Tangential-
raum] to M at p, that is, the set of all such tangent vectors
Xp.
Clearly TpM is a vector space, with the obvious operations

(Xp + λYp) f := Xp f + λYp f .

(In fact, this is just exhibiting TpM as a linear subspace
within the abstract dual vector space C∞(p)∗ of all linear
functionals on C∞(p).
Note that if U ⊂ M is open with p ∈ U, then TpU = TpM
since the set C∞(p) of germs is the same whether we start
with M or U.
Now suppose f : Mm → Nn is a smooth map of manifolds
and consider a point p ∈ M and its image q := f (p) ∈ N.
If g is a germ at q, then g ◦ f is a germ at p. (Here of
course, we really compose f with any of the functions in
the equivalence class g.) This gives a map

f ∗ : C∞(q)→ C∞(p), f ∗(g) := g ◦ f

between these algebras of germs, which we claim is linear,
indeed an algebra homomorphism. (Note that the upper
star is used to indicate a “pull-back”, a map associated to f
acting in the opposite direction.)
Like any linear map between vector spaces, f ∗ induces a
dual map between the dual spaces; here we claim this re-
stricts to a map f∗ : TpM → TqN. Working out what the
dual map means, we find that for Xp ∈ TpM and g ∈ C∞(q)
we have (

f∗(Xp)
)
(g) = Xp

(
f ∗(g)

)
= Xp(g ◦ f ).

This linear map f∗ is called the differential [DE: Differen-
tial] of f at p and we will usually write it as Dp f . (Other
common notations include dp f or simply f ′(p).)

Theorem A4.1. Given a smooth map f : Mm → Nn of
manifolds and a point p ∈ M, the construction above in-
duces a linear map f∗ = Dp f : TpM → T f (p)N, the differ-
ential of f at p.

Proof. The many claims we made during the construction
are all routine to check. We gives just two examples. To
see that f∗(Xp) is actually a tangent vector at q := f (p), we
need to check the Leibniz rule:

f∗(Xp)(gh) = Xp
(
(gh) ◦ f

)
= Xp

(
(g ◦ f )(h ◦ f )

)
=

(
Xp(g ◦ f )

)(
h(q)

)
+

(
Xp(h ◦ f )

)(
g(q)

)
=

(
f∗(Xp)g

)
h(q) +

(
f∗(Xp)h

)
g(q).

To see that f∗ is linear, we compute:

f∗(Xp + λYp)(g) = (Xp + λYp)(g ◦ f )
= Xp(g ◦ f ) + λYp(g ◦ f )
=

(
f∗(Xp) + λ f∗(Yp)

)
(g). �

It is now a straightforward exercise to check the “functori-
ality” of the operation f 7→ f∗, that is, the following two
properties:

• For f = id : M → M, the maps f ∗ and f∗ are also
the identity maps.
• If h = g ◦ f (for maps between appropriate mani-

folds), then h∗ = f ∗ ◦ g∗ and h∗ = g∗ ◦ f∗.

(The second of these is of course the chain rule from cal-
culus, Dp(g ◦ f ) = D f (p)g ◦ Dp f .)

Corollary A4.2. If f : M → N is a diffeomorphism, then
for any p ∈ M, the map Dp f : TpM → T f (p)N is an iso-
morphism. In particular, if (U, ϕ) is a coordinate chart
for Mm, then ϕ∗ : TpM → Tϕ(p)R

m is an isomorphism. �

Of course, this refers to TqR
m in the sense we have just de-

fined for abstract manifolds. It is time to go back and prove
the claim we made early on, that there are no derivations
on Rm other than the usual directional derivatives, that is,
that TpR

m � Rm.
We know we have a map Rm → TpR

m which associates to
each v ∈ Rm the directional derivative ∂v at p. This map is
clearly linear and is easily seen to be injective. Indeed, if
πi : Rm → R denotes the projection p 7→ pi, then ∂vπ

i =

vi = πi(v); now two distinct vectors v , w must differ in
some component vi , wi, meaning ∂vπ

i , ∂wπ
i, so ∂v ,

∂w. The claim that now remains is just that this map is
surjective – there are no other derivations.

Lemma A4.3. Suppose Xp ∈ TpR
m and g ∈ C∞(p) is

constant (in some neighborhood of p). Then Xpg = 0.

Proof. By linearity of Xp it suffices to consider g ≡ 1. By
the Leibniz rule,

Xp(1) = Xp(1 · 1) = Xp(1) · 1 + Xp(1) · 1 = 2Xp(1)

which clearly implies Xp(1) = 0. �

Our next lemma can be thought of as a version of Taylor’s
theorem. (Note that one could let B be an arbitrary star-
shaped region around p.)

Lemma A4.4. Let B := Bε(p) where p ∈ Rm and ε > 0.
For any g ∈ C∞(B), we can find a collection of m functions
hi ∈ C∞(B) with hi(p) =

∂g
∂xi (p), such that on B we have

g(x) = g(p) +
∑

i

(xi − pi)hi(x).

Proof. If we set

hi(x) :=
∫ 1

0

∂g
∂xi

(
p + t(x − p)

)
dt

then the desired properties follow from the fundamental
theorem of calculus in the form

g(x) = g(p) +

∫ 1

0

d
dt

g
(
p + t(x − p)

)
dt,

noting that this t-derivative is the directional derivative of
g in direction x − p. �

6
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Theorem A4.5. The map v 7→ ∂v is a (natural) isomor-
phism Rm → TpR

m.

Proof. As noted above, all that remains is to prove surjec-
tivity. Given Xp ∈ TpR

m, define v ∈ Rm by vi := Xp(πi).
We claim ∂v = Xp. By definition, these agree on (the germs
of) the projections πi. Now suppose g ∈ C∞(p) is any
germ. Finding a representative g ∈ C∞

(
Bε(p)

)
for some

ε > 0, we can use the second lemma to write

g = g(p) +
∑

i

(πi − pi)hi.

Then by the definition of derivation,

Xpg = Xp
(
g(p)

)
+

∑(
Xpπ

i − Xp pi)(hi(p)
)

+
∑

(Xphi)
(
πi(p) − pi).

Here the last sum (which would seem to involve second
derivatives of g) vanishes simply because πi(p) = pi. And
the terms Xp pi and Xp

(
g(p)

)
vanish by the first lemma.

Thus we are left with

Xpg =
∑

i

(Xpπ
i)
(
hi(p)

)
=

∑
vi ∂g
∂xi (p) = ∂v(g)

as desired. �

Combining this with Corollary A4.2, we see that each tan-
gent space TpM to an m-manifold Mm is m-dimensional.

2024 October 21: End of Lecture 3

Note that if {ei} is the standard basis of Rm (so that v =∑
viei), then

{
∂ei = ∂

∂xi

}
is the corresponding standard ba-

sis of TpR
m. Recall that, given a coordinate chart (U, ϕ)

around p ∈ Mm, the differential Dpϕ = ϕ∗ : TpM →

Tϕ(p)R
m � Rm is an isomorphism. In particular, each tan-

gent space TpM to an m-manifold has dimension m. Under
this isomorphism, the ∂

∂xi correspond to the elements of a
basis for TpM, which we write as

∂i = ∂i,p := ϕ−1
∗

(
∂

∂xi

)
.

Suppose a function f ∈ C∞(U) has coordinate expression
f ◦ ϕ−1 : ϕ(U)→ R. Then at p ∈ U we get

∂i f = ϕ−1
∗

(
∂

∂xi

)
( f ) =

∂

∂xi

(
f ◦ ϕ−1

)
.

In particular, if we consider the individual components
x j = π j ◦ ϕ of the coordinates ϕ as real-valued functions,
we find ∂i

(
π j ◦ ϕ) = ∂π j/∂xi = δ

j
i . We can express any

Xp ∈ TpM in terms of our basis {∂i} as follows:

Xp =

m∑
i=1

(
Xp(πi ◦ ϕ)

)
∂i

Consider a smooth map f : Mm → Nn between manifolds,
and choose local coordinates (U, ϕ) around p ∈ M and

(V, ψ) around q := f (p) ∈ N. (We write xi = πi ◦ ϕ and
y j = π j ◦ ψ.) In these coordinates, f is represented by the
map ψ ◦ f ◦ ϕ−1 of Euclidean spaces, or more explicitly as
functions y j = f j(x1, . . . , xm). Here the derivative is given
by the Jacobian matrix

J =

(
∂y j

∂xi

)
=

(
∂ f j

∂xi

)
.

Let us write {∂i} as usual for the coordinate frame of TpM,
where ∂i = ϕ−1

∗

(
∂/∂xi). For TqN, we use the notation

∂̃ j = ψ−1
∗

(
∂/∂y j). We find that J is the matrix of Dp f with

respect to these bases. That is,

Dp f
(
∂i,p) =

∑
j

(
∂y j

∂xi

)
ϕ(p)

∂̃ j,q,

or equivalently, if Xp =
∑

vi∂i,p and f∗(Xp) =
∑

w j∂̃ j,q,
then we have

w j =
∑

i

(
∂y j

∂xi

)
ϕ(p)

vi.

Consider now the case of the identity map f = idM . That
is, we have overlapping coordinate charts (U, ϕ) and (V, ψ)
for Mm. At any point p ∈ U ∩ V , we have two different
coordinate bases for TpM, which we write as

{
∂i
}

(with
respect to ϕ) and

{
∂̃i
}

(with respect to ψ). Then the change-
of-basis matrix is just the Jacobian matrix of the coordinate
expression of idM , which here is just the transition function
ψ◦ϕ−1. (This is the basis for a definition of tangent vectors
still popular among physicists: a tangent vector “is” its ex-
pression in a coordinate basis, with the rules for changing
this “covariantly” when we change coordinates.)
As usual, we also consider the special cases where one of
the manifolds M or N is (a submanifold of) R. For R of
course we use the standard chart (the identity map), and we
write ∂t for the corresponding basis vector for the tangent
space to R at any point.
A map γ : (a, b) → Mm is a curve [DE: Kurve] in M. Its
velocity vector [DE: Geschwindigkeitsvektor] at p := γ(t) ∈
M is γ′(t) := Dtγ(∂t) ∈ TpM.
The opposite case is a real-valued function f ∈ C∞(M).
For Xp ∈ TpM, we have

(
Dp f

)
(Xp) ∈ T f (p)R, so that(

Dp f
)
(Xp) = λ∂t for some λ ∈ R. Of course, this λ is just

the directional derivative Xp f . For instance, in local coor-
dinates, (Dp f )(∂i) = (∂i f )∂t. We write dp f : TpM → R for
the linear map Xp 7→ Xp f .
The vector space T ∗pM dual to TpM is called the cotangent
space [DE: Kotangentialraum] and its elements are cotan-
gent vectors (or covectors [DE: Kovektoren] for short).
Thus dp f ∈ T ∗pM is the covector given by dp f (Xp) := Xp f ;
this is just another way to view the differential since we
have Dp f (Xp) = dp f (Xp)∂t.
If f : Mm → Nn is a smooth map, we define its rank
[DE: Rang] at p ∈ M to be the rank of the linear map
Dp f : TpM → T f (p)N. In local coordinates (U, ϕ) and
(V, ψ) as above, this is the rank of the Jacobian derivative
matrix (∂y j/∂xi).

7
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The rank theorem from multivariable calculus can be re-
stated most nicely for smooth manifolds. (When stated for
Euclidean spaces it needs to mention diffeomorphisms.)

Theorem A4.6 (Rank Theorem). Suppose f : Mm → Nn

is a smooth map of constant rank k. Then for each p ∈ M
there are coordinate neighborhoods (U, ϕ) of p and (V, ψ)
of f (p) such that ψ ◦ f ◦ ϕ−1 is the orthogonal projection
map

(x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0) ∈ Rn,

where of course there are n − k zeros at the right. (Note:
if we want, we can require that ϕ(U) = B1(0) and ψ(V) =

B1(0).)

Note that the rank can be at most min(m, n); maps of max-
imum rank are particularly important. We say that f is an
immersion [DE: Immersion] if f has constant rank m ≤ n,
that is, if Dp f is injective for every p ∈ M. We say f is a
submersion [DE: Submersion] if f has constant rank n ≤ m,
that is, if Dp f is surjective for every p ∈ M. For m = n
these notions coincide. A smooth map f : Mm → Nm

between manifolds of the same dimension is a diffeomor-
phism if and only if it is bijective and has constant rank m.

A5. The tangent bundle

Definition A5.1. The tangent bundle [DE: Tangentialbün-
del] T M = T (M) to a smooth manifold Mm is, as a set, the
(disjoint) union T M :=

⋃
p∈M TpM of all tangent spaces

to M; there is obviously a projection π : T M → M with
π−1{p} = TpM. We can equip T M in a natural way
with the structure of a smooth 2m-manifold. Start with
a (smooth) atlas for M. Over any coordinate chart (U, ϕ),
there is a a bijection Dϕ : TU → ϕ(U)×Rm ⊂ R2m sending∑

i vi∂i ∈ TpU = TpM to
(
ϕ(p), v

)
. We define the topology

on T M by specifying that these maps Dϕ are homeomor-
phisms; they then form an atlas for T M as a topological
2m-manifold.

Exercise A5.2. These charts for T M are C∞-compatible,
and thus define a smooth structure on T M.

Note that T M is an example of a vector bundle, which is
a special kind of fiber bundle to be defined later. Without
going into details, a fiber bundle [DE: Faserbündel] with
base B and fiber F is a certain kind of space E with projec-
tion π : E → B such that the preimage of any point b ∈ B
is isomorphic to F. A trivial bundle is E = F × B pro-
jecting to the second factor. Any fiber bundle is required
to be locally trivial in the sense that B is covered by open
sets U over which the bundle is trivial (F × U). A section
[DE: Schmitt] of a bundle π : E → B is a continuous choice
of point in each fiber, that is, a map σ : B → E such that
π ◦ σ = idB.

Definition A5.3. A (smooth) vector field [DE: Vektorfeld]
X on a manifold Mm is a smooth choice of a vector Xp ∈

TpM for each point p ∈ M. That is, X is a (smooth) sec-
tion [DE: Schnitt] of the bundle π : T M → M, meaning a
smooth map X : M → T M such that π◦X = idM . We write
X = X(M) = Γ(T M) for the set of all vector fields.

We define addition of vector fields pointwise: (X + Y)p =

Xp+Yp. Similarly, we can multiply a vector field X ∈ X(M)
by a smooth function f ∈ C∞(M) pointwise: ( f X)p =

f (p)Xp. That is, the vector fields X(M) form not just a real
vector space, but in fact a module over the ring C∞(M) of
smooth functions.
Given a vector field X and a function f , we can also define
X f ∈ C∞(M) by (X f )(p) := Xp f ∈ R. Note the distinc-
tion between the vector field f X (given by pointwise scalar
multiplication) and the function X f (given by directional
derivatives of f ).

Exercise A5.4. Each of the following conditions is equiv-
alent to the smoothness of a vector field X as a section
X : M → T M:

• For each f ∈ C∞(M), the function X f is also
smooth.
• If we write X|U =:

∑
vi∂i in a coordinate chart

(U, ϕ), then the components vi : U → R are smooth.

2024 October 22: End of Lecture 4

A6. Submanifolds

The canonical example of an m-dimensional submanifold
of an n-manifold is Rm × {0} ⊂ Rn, the set of points whose
last n − m coordinates vanish.

Definition A6.1. Given a manifold Nn, we say a subset
M ⊂ N is an m-submanifold [DE: m-Untermannigfaltig-
keit] if around each point p ∈ M there is a coordinate chart
(U, ϕ) for N in which M looks like Rm × {0} ⊂ Rn. That is,
in such a preferred chart we have

ϕ(M ∩ U) = ϕ(U) ∩
(
Rm × {0}

)
.

It is straightforward then to check that M (with the sub-
space topology) is an m-manifold. Indeed, the preferred
charts (dropping the last n − m coordinates) form a C∞ at-
las for Mm.
Two alternative local descriptions – as for submanifolds
in Rn – are then immediate. A submanifold Mm ⊂ Nn can
be described locally (that is, in some neighborhood U ⊂ N
of any point p ∈ M) as

1. the zero level set of a submersion Nn → Rn−m (here
ϕ composed with projection onto the last n − m co-
ordinates), or

2. the image of an immersion Rm → Nn (here the stan-
dard inclusion Rm ↪→ Rn composed with ϕ−1).

We now want to consider in more detail the description
of submanifolds via immersions. Immersions from (open
subsets of) Rm are also known as regular parametriza-
tions [DE: reguläre Parametrisierungen]. Recall that last
semester we used such regular parametrizations to describe
curves and surfaces in R3. It is of course important that the
parametrization be an immersion, in order to be sure that
the image is a smooth submanifold.

8
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Definition A6.2. A continuous injection f : X → Y of
topological spaces is a topological embedding [DE: Ein-
bettung] if it is a homeomorphism onto its image f (X).
A (smooth) embedding [DE: Einbettung] f : Mm → Nn of
manifolds is an immersion that is a topological embedding.

We already know that any submanifold is locally the image
of a smooth embedding. We will show that this holds glob-
ally and, conversely, that the image of any smooth embed-
ding is a submanifold; the embedding is then not merely
a homeomorphism but indeed a diffeomorphism onto its
image.

Examples A6.3. Consider the following examples of im-
mersions based on smooth plane curves.

1. t 7→ (cos 2πt, sin 2πt) is a periodic parametrization
of a simple closed curve, a 1-submanifold, the unit
circle. This immersion is not injective, but becomes
injective (indeed an embedding) if we consider the
domain to be the abstract circle R/Z � S1.

2. If r : R→ (1, 2) is strictly monotonic, then

t 7→
(
r(t) cos 2πt, r(t) sin 2πt

)
is an embedding whose image is a submanifold, a
spiral curve in the plane. Note that this image is
not a closed subset of R2 (because the immersion is
not “proper”). Any small neighborhood of a point
p ∈ R2 on one of the limiting circles sees infinitely
many “sheets” of the submanifold.

3. t 7→ (sin 2πt, sin 4πt) is again a closed curve, this
time a figure-eight. It descends again to the quotient
cirle R/Z, but is not injective even there. The image
is not a submanifold.

4. If we restrict this last example to the open interval
(0, 1), which of course is diffeomorphic to R, we
get an injective immersion whose image is still the
whole figure-eight curve, not a submanifold. This is
not an embedding.

5. One can build an injective immersion whose image
is not even locally connected. For instance, join the
“topologist’s sine curve”, the curve t 7→ (1/t, sin t)
for t ≥ 2, to a downward ray in the y-axis, the curve
t 7→ (0, t) for t ≤ 1, via a smooth intermediate arc
for t ∈ [1, 2].

6. For any slope α ∈ R, we can project the line t 7→
(t, αt) of slope α from R2 to the quotient torus T 2 =

R2/Z2. For α = p/q ∈ Q, this gives a periodic curve,
that is, a submanifold in T 2 diffeomorphic to a circle.
For irrational α, on the other hand, the immersion is
injective but its image X is dense in T 2 and thus is
not a submanifold (in our sense). (The abstract torus
T 2 can of course be embedded in R3 as the standard
round torus.)

In some other contexts, mainly that of Lie groups, exam-
ples like this last one can be considered as submanifolds. A

Lie group is smooth manifold with the structure of an alge-
braic group, where the group operations are smooth maps;
we will discuss these later. The torus T 2 is an example of a
(compact, 2-dimensional) Lie group (under addition). The
dense subset X – consisting of points of the form (t, αt) –
is a subgroup; from the point of view of Lie groups this
is a 1-dimensional Lie subgroup. Of course X ⊂ T 2 with
the subset topology is not a manifold. Instead we simply
use the bijective immersion R→ X to transfer the standard
smooth manifold structure from R to X.
Indeed, any time we have an injective immersion
f : Mm → Nn, it is a bijection onto its image, and could be
used to transfer the topology and smooth structure from M
to that image, making f by definition a diffeormorphism,
though not to a subspace of N. This is often called an im-
mersed submanifold, to distinguish is from the embedded
submanifolds we have defined.
Above we saw several examples of injective immersions of
manifolds which were not embeddings. However, there is
a standard result from point-set topology which guarantees
that this never happens when M is compact.

Proposition A6.4. If X is compact and Y is Hausdorff,
then any continuous bijection f : X → Y is a homeomor-
phism.

For the proof, recall that a map f : X → Y is open [DE:
offen] if the image of every open set U ⊂ X is open in Y ,
and f is closed [DE: abgeschlossen] if the image of every
closed set A ⊂ X is closed in Y . If f is a bijection, then
these notions are equivalent, and also equivalent to f −1 be-
ing continuous.

Proof. We need to show f −1 is continuous, or equivalently
that f is a closed map. So suppose A ⊂ X is closed; we
need to show f (A) is closed in Y . Since X is compact,
A is also compact. Since f is continuous, f (A) is then
compact. But a compact subset of the Hausdorff space Y
is necessarily closed by Exercise A1.10. �

Two examples related to the quotient map I → S1 (where
I = [0, 1] and the quotient identifies the endpoints {0, 1}
to a single point) show why the two conditions are neces-
sary. First, we can get a bijection by restricting this map
to the noncompact interval [0, 1). Second, we can get a
bijection by replacing S1 by a non-Hausdorff circle with a
doubled basepoint (like our line with doubled origin). In
both cases we have a continuous bijection whose inverse is
not continuous.

Corollary A6.5. If X is compact and Y is Hausdorff, then
any (continuous) injection f : X → Y is a topological em-
bedding.

Corollary A6.6. If M is a compact manifold, then any in-
jective immersion f : Mm → Nn is a smooth embedding.

Now we show that the concepts of smooth embedding and
submanifold coincide in the following sense:

Theorem A6.7. If f : Mm → Nn is an embedding, then
f (M) ⊂ N is a submanifold and f : M → f (M) is a dif-
feomorphism. If Mm ⊂ Nn is any submanifold, then the
inclusion i : M ↪→ N is an embedding.

9
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Proof. For the first statement, consider a point p ∈ M and
its image q = f (p) ∈ f (M) ⊂ N. Because f has constant
rank m ≤ n, by the rank theorem, we can find coordinates
(U, ϕ) around p ∈ M and (V, ψ) around q ∈ N in which f
looks like the embedding Rm ↪→ Rn. It is tempting to hope
that (V, ψ) is the preferred chart we seek in the definition
of submanifold – but we have not yet used the fact that
f is an embedding and the problem is that other parts of
f (M) might enter V , while we want f (U) = f (M) ∩ V .
But since f is an embedding, f (U) is open in f (M) – in
the subspace topology from N. By definition of subspace
topology, this means there is an open subset W ⊂ N such
that f (U) = W ∩ f (M). Now we simply restrict (V, ψ) to
W∩V and we find these are preferred coordinates showing
f (M) as a submanifold of N (around q).
We essentially proved the second statement when we put a
smooth structure on the submanifold M ⊂ N: we remarked
then that the manifold topology on M was the subspace
topology from N, which exactly means the inclusion is a
topological embedding. The fact that it is an immersion is
also obvious in a preferred coordinate chart. �

Suppose Mm ⊂ Nn is a submanifold. Then at any p ∈ M
we can view TpM ⊂ TpN in a natural way as a vector
subspace (using the injective differential Dpi of the inclu-
sion map i). If the submanifold M is described (locally)
as the image of a regular parameterization, an immersion
Rm ⊃ U → N, then TpM is the image of its differen-
tial. If instead M is (locally) the zero set of a submersion
f : N → Rn−m, then TpM is the kernel of Dp f .

2024 October 28: End of Lecture 5

A7. Vector fields and their flows

Suppose f : Mm → Nn is a smooth map and X is a vector
field on M. For any point p ∈ M, we can use f∗ = Dp f
to push a vector Xp ∈ TpM forwards to a vector at f (p) ∈
N. If there exists a vector field Y on N such that for each
p ∈ M we have Y f (p) = Dp f (Xp), then we say Y is f -
related to X. Of course, when f is not injective, it might be
impossible to find an f -related vector field; when f is not
surjective, Y is not uniquely determined away from f (M).
But when f is a diffeomorphism, there clearly is a unique
Y that is f -related to any given X, and then we write Y =

f∗(X).
If f : M → M is a diffeomorphism it can happen that a
vector field X is f -related to itself: X = f∗(X). In this case,
we say X is f -invariant [DE: f -invariant]. As a simple
example, consider the radial field Xp = p on Rm. It is
invariant under any invertible linear map L : Rm → Rm.
This may seem like a very special situation, but in fact our
goal now, given an arbritrary vector field X, is to construct
a one-parameter family of diffeomorphisms θt : M → M
under which X is invariant. (In the case of the radial field,
our construction would pick out the one-parameter family
of homotheties p 7→ et p.)
Recall that if G is an algebraic group and X is any set, then
an action [DE: Wirkung] θ of G on X is a map θ : G × X →

X, often written as

(g, x) 7→ g · x := θg(x),

satisfying the following properties:

θe = idX , θgh = θg ◦ θh.

(That is, in the typical group theory notation, e · x = x and
(gh) · x = g · (h · x).) Each θg : X → X is a bijection (since
θg−1 is an inverse). The action θ partitions the set X into
orbits [DE: Bahnen]

G · x := {g · x : g ∈ G},

which are the equivalence classes under the equivalence
relation x ∼ g · x.
We are interested in smooth actions of the (1-dimensional
Lie) group (R,+) on a smooth manifold Mm. Such an ac-
tion is a smooth map θ : R × M → M, again written as
(t, p) 7→ θt(p), satisfying

θ0 = idM , θs ◦ θt = θs+t.

It follows that each θt : M → M is a diffeomorphism, with
inverse θ−t. Note that since R is an abelian group (s + t =

t + s), these diffeomorphisms all commute:

θt ◦ θs = θs+t = θs ◦ θt.

This is often simply called a one-parameter group action
or a (global) flow [DE: (globaler) Fluss] on M.

Definition A7.1. We say a vector field X is invariant [DE:
invariant] under the action θ if it is invariant under each θt,
that is, if

(
θt
)
∗X = X for all t.

This may seem very unlikely, but we will see it is quite
natural.
Our notation θt(p) := θ(t, p) emphasizes the diffeomor-
phisms θt obtained by fixing t ∈ R. If instead, we fix a
point p ∈ M, we of course get a curve γp : R→ M defined
by γp(t) := θt(p). The trace of this curve is the orbit of
p ∈ M under the action θ. It is helpful to rewrite the defin-
ing property θs ◦ θt = θs+t of a flow in terms of these flow
curves. For any point q := γp(s) = θs(p) along γp, we find
that the curve γq is just a reparametrization of γp; indeed

γq(t) = θt(q) = θt
(
θs(p)

)
= θt+s(p) = γp(s + t).

We could write this as γq = γp ◦ (s + ·). Similarly, γq =

θs ◦ γp:

γq(t) = θs
(
θt(p)

)
= θs

(
γp(t)

)
.

Definition A7.2. The infinitesimal generator [DE: in-
finitesimaler Erzuger] of the flow θ is the vector field X
on M defined by Xp := γ′p(0), the velocity vector of the
curve γp at p = γp(0).

An equivalent way to define the infinitesimal generator X
comes from looking at a standard “vertical” vector field V
on R × M, defined by

T(t,p)(R × M) = TtR × TpM 3 (∂t, 0) =: V(t,p).

Then it is easy to check that Xp =
(
D(0,p)θ

)
(V).

10



J.M. Sullivan, TU Berlin A: Manifolds Diff Geom II, WS 2024/25

Theorem A7.3. Suppose θ is a flow on M with infinitesi-
mal generator X. Then X is θ-invariant. That is, for any
s ∈ R and p ∈ M we have(

θs
)
∗(Xp) = Xθs p.

Proof. Write q = θs(p) so that Xp = γ′p(0) and Xq = γ′q(0).
Then the desired formula follows immediately from the
observation above that γq = θs ◦ γp, via the chain rule. �

Corollary A7.4. If Xp = 0 then the curve γp is the con-
stant map γp(t) ≡ p. If Xp , 0, then the curve γp is an
immersion. If it is not injective on R then it is s-periodic
and injective on R/sZ for some s > 0.

Proof. First note that

γ′p(t) = Xγp(t) =
(
θt
)
∗Xp.

Since θt∗ is a linear isomorphism, these vectors either re-
main zero or remain nonzero. By the rank theorem, an
immersion is locally injective; if globally we have a non-
injective curve with γp(t + s) = γp(t) for some s and t,
then the same holds for this s and every t, that is, γp is
s-periodic. �

Recall that these curves are the orbits [DE: Bahnen] of
the flow θ and form a partition of M. By the corollary
above, each orbit is either a single fixed point, an embed-
ded closed loop (called a periodic orbit), or an injectively
immersed open arc (which might not be embedded).
Note also that the vector field X is θ-related to the vertical
vector field V = (∂t, 0) on R × M since

Xθ(t,p) = D(t,p)θ
(
V(t,p)

)
.

As we have seen, any flow θ has an infinitesimal genera-
tor X. What if we start with a vector field X on M: does it
generate a flow? We will see that the answer is always yes
when M is compact; in general the flow might exist only
for small t (depending on p).

Definition A7.5. Given a vector field X on a manifold M,
a curve γ : J → M (where J ⊂ R is some open interval) is
called an integral curve [DE: Integralkurve] of X if γ′(t) =

Xγ(t) for all t ∈ J.

As we have seen, any R-action θ has an infinitesimal gen-
erator X. Then each orbit γp (with γp(t) = θt(p)) is an
integral curve of X, defined on J = R. In other cases,
the integral curve does not exist for all time, since it flows
out of M in finite time. For instance, consider the flow
θt(x) = x + te1 on Rm, whose infinitesimal generator is
X = ∂1. If we replace Rm by an open subset (like B1(0) or
Rnr{0}) then we sometimes leave this open subset in finite
time.
Think for a minute about dimension m = 1. Up to diffeo-
morphism, there is no difference between reaching the
“end” of a finite open interval like (0, 1) and reaching ∞.
A classical example is the flow of t2∂t on R, that is, the
solution of the ODE du/dt = u2, which blows up in finite
time. So it is too much to hope for a global solution in

general. But of course, standard theorems on ODEs guar-
antee local existence and uniqueness of solutions, which
can be viewed as integral curves of a vector field. (In an
ODE course, you might learn about minimal smoothness
conditions for existence and for uniqueness; certainly C∞

or even C1 suffices for both.)

Theorem A7.6. Suppose U ⊂ Rm is open and f : U → Rm

is smooth. Then for each p ∈ U, there is a unique solution
to the equation dx/dt = f (x) with initial condition x(0) =

p; it is smooth and is defined on some maximal open time
interval (ap, bp) 3 0. �

A proof of this basic result (using the Banach fixed-
point theorem for contraction mappings) can be found in
Boothby’s textbook. Somewhat more subtle is the “smooth
dependence on parameters” as given in the next theorem.
(See Conlon’s textbook for a proof.) In our version, there
are no parameters other than the initial point.

Theorem A7.7. Suppose U ⊂ Rm is open and f : U → Rm

is a smooth function. For any point p ∈ U there exists
ε > 0, a neighborhood V ⊂ U of p, and a smooth map

x : (−ε, ε) × V → U

satisfying

∂x
∂t

(t, q) = f
(
x(t, q)

)
, x(0, q) = q

for all t ∈ (−ε, ε) and q ∈ V. This map x is unique. �

Like any local result, this can be transferred immediately to
the context of an arbitrary manifold, where its restatement
has a more geometric flavor.

Definition A7.8. A local flow [DE: lokaler Fluss] around
p ∈ M is a map

θ : (−ε, ε) × V → M

(for some ε > 0 and some open V 3 p) such that θ0(q) = q
for all q ∈ V , and

θt
(
θs(q)

)
= θt+s(q)

whenever both sides are defined. The flow lines [DE: Flus-
slinien] are the curves γq(t) := θt(q); the infinitesimal
generator [DE: infinitesimaler Erzeuger] is the vector field
Xq = γ′q(0) tangent to the flow lines.

Theorem A7.9. Any vector field X on a manifold M has a
local flow around any point p ∈ M. �

Note that if we prove this theorem by appealing to the pre-
vious theorem on Rm, then the neighborhood V we con-
struct (and even the values of θ) will be in some coordinate
chart around p. But this doesn’t affect the statement of the
theorem.

Theorem A7.10. On a compact manifold Mm, any vector
field X has a global flow.

11
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Proof. For any p ∈ M we have a local flow, defined on
some (−εp, εp)×Vp. By compactness, finitely many of the
Vp suffice to cover M. Let ε > 0 be the minimum of the
corresponding (finitely many) εp. Then we know that the
flow of X exists everywhere for a uniform time t ∈ (−ε, ε).
But then, for instance using θnt = θt ◦ · · · ◦ θt, we can
construct flows for arbitrary times. �

2024 October 29: End of Lecture 6

There is one point that still needs clarification. When we
prove Theorem A7.9 by working in coordinates, the local
flow is unique by the uniqueness results in Rn. But to prove
Theorem A7.10 we need to know that the flows defined on
different neighborhoods Vp agree on their overlaps. This
could actually fail if we didn’t require our manifolds to be
Hausdorff spaces: on a line or circle with a doubled base-
point, a flow could flow through either copy of the doubled
point, so can’t be uniquely defined.

Lemma A7.11. Suppose X is a vector field on a manifold
M. If α and β are two flow lines of X through p ∈ M, then
they agree (on the intersection I 3 0 of the time intervals
they are defined on).

Proof. Consider S =
{
t ∈ I : α(t) = β(t)

}
⊂ I. Clearly

0 ∈ S since α(0) = p = β(0). We show S = I, using the
connectedness of I, by showing the nonempty subset S is
both open and closed in I.
Openness follows from the local uniqueness of flows in a
coordinate neighborhood. If t ∈ S , then pick a coordinate
chart U around q := α(t) = β(t). By continuity, both flows
stay in U for some time interval V 3 t, so the flows must
agree there.
One in tempted to simply say that S is closed since α = β
is a “closed condition”, but this is where we use the Haus-
dorff property of M. The set S is the preimage under the
map (α, β) of the diagonal ∆ :=

{
(q, q) : q ∈ M

}
. By

Exercise A1.9, since M is Hausdorff, ∆ ⊂ M × M is a
closed subset. Thus its preimage S under the continuous
map (α, β) is closed. �

A8. Lie brackets

Definition A8.1. A Lie algebra [DE: Lie-Algebra] is a vec-
tor space L with an antisymmetric [DE: antisymmetrisch]
(or skew-symmetric) product

L × L → L, (v,w) 7→ [v,w] = −[w, v]

that is bilinear [DE: bilinear] and satisfies the Jacobi iden-
tity [DE: Jacobi-Identität][

u, [v,w]
]
+

[
v, [w, u]

]
+

[
w, [u, v]

]
= 0.

Bilinearity of course means that the product is linear in v
and in w. By antisymmetry it suffices to check one of these:

[λv + v′,w] = λ[v,w] + [v′,w].

A trivial example of a Lie algebra is any vector space with
the zero product [v,w] := 0.
The Jacobi identity could be viewed as a replacement for
associativity (which for an antisymmetric product would
mean

[
u, [v,w]

]
+

[
w, [u, v]

]
= 0, omitting the middle term

of the Jacobi identity). The Jacobi identity may not at first
seem intuitive, but in fact there are some familiar nontrivial
examples.

Example A8.2. Three-space R3 with the usual vector cross
product [v,w] := v × w = v ∧ w is a Lie algebra.

Example A8.3. The ordinary matrix product on Rn×n is bi-
linear but neither symmetric nor antisymmetric. But the
matrix commutator [A, B] := AB − BA is clearly antisym-
metric. To check the Jacobi identity, we compute[

A, [B,C]
]

= ABC − ACB − BCA + CBA

and then cyclically permute. The bracket notation for Lie
algebras comes from this earlier use of brackets for com-
mutators.

Example A8.4. More generally (and more abstractly), sup-
pose V is any vector space, and consider the set End(V) :=
L(V,V) of linear endomorphisms (self-maps) on V . Then
the commutator

[A, B] := A ◦ B − B ◦ A

is again a Lie product on the vector space End(V).

Now consider the set X(M) of smooth vector fields on a
manifold Mm. As we have observed, this is an (infinite-
dimensional) vector space over R and indeed a module
over C∞(M), where for X,Y ∈ X and f ∈ C∞ the vector
field f X + Y is defined pointwise:

( f X + Y)p = f (p)Xp + Yp.

But we also recall that a vector field X ∈ X gives (or indeed
can be viewed as) a linear map C∞(M)→ C∞(M) via f 7→
X f , taking directional derivatives of f in the directions Xp.
That is, we can view vector fields as endomorphisms of
C∞(M):

X(M) ⊂ End
(
C∞M

)
.

As Lie observed, the commutator product on End(C∞M)
in fact restricts to the subspace X:

Theorem A8.5. The space of vector fields X(M) is a Lie
algebra with the Lie bracket

[X,Y] f := X(Y f ) − Y(X f ).

Note that the ordinary composition product does not re-
strict: the mapping f 7→ X(Y f ) is an endomorphism of
C∞(M) which should be thought of as taking a second
derivative of f in particular directions; this does not cor-
respond to a vector field, because second derivatives do
not satisfy the Leibniz product rule. But partial derivatives
commute; in the commutator above the second-order terms
cancel, leaving only first-order terms, that is, a vector field
[X,Y]. To understand why there can be first-order terms

12
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remaining, recall the formula for the second derivative of a
function f along a curve γ in Rn passing through γ(0) = p
with velocity γ′(0) = v and acceleration γ′′(0) = a:

d2

dt2

∣∣∣∣∣∣
t=0

f
(
γ(t)

)
= D2

p f (v, v) + Dp f (a).

Proof. We need to check that the endomorphism

[X,Y] : C∞(M)→ C∞(M)

is a vector field, that is, that it is local and satisfies the
Leibniz product rule. But locality – the fact that the value
of [X,Y] f at p depends only on the germ of f at p and not
on its values elsewhere – is clear, giving

[X,Y]p : C∞(p)→ R, f 7→ Xp(Y f ) − Yp(X f ).

To show [X,Y]p ∈ TpM we now check the Leibniz rule:

[X,Y]p( f g) = Xp
(
Y( f g)

)
− Yp

(
X( f g)

)
= Xp

(
f Yg + gY f

)
− Yp

(
f Xg + gX f

)
= (Xp f )(Ypg) + f (p)Xp(Yg)

+ (Xpg)(Yp f ) + g(p)Xp(Y f )
− (Yp f )(Xpg) − f (p)Yp(Xg)
− (Ypg)(Xp f ) − g(p)Yp(X f )

= f (p)[X,Y]pg + g(p)[X,Y]p f �

Exercise A8.6. Of course the Lie bracket [X,Y] is R-
bilinear, but it is not C∞(M)-bilinear. Instead we have

[ f X, gY] = f g[X,Y] + f (Xg)Y − g(Y f )X.

(Hint: consider first the case [ f X,Y] = f [X,Y] − (Y f )X
and then use that twice, with the antisymmetry.)

Lemma A8.7. Suppose (U, ϕ) is a chart for a manifold M,
and let ∂i ∈ X(U) denote as usual the coordinate basis vec-
tor fields on U. Then their Lie brackets vanish: [∂i, ∂ j] = 0
for all i, j = 1, . . . ,m.

Proof. Let f be a germ at p ∈ U, and write f̂ for the pull-
back germ f ◦ ϕ−1 at ϕ(p) ∈ Rm. By definition of ∂i, we
have (∂i f )(p) =

(
∂ f̂ /∂xi)(ϕ(p)

)
. Then for the Lie bracket

we get:

[∂i, ∂ j]p f = ∂i(∂ j f )(p) − ∂ j(∂i f )(p)

=
∂2 f̂

dxi dx j

(
ϕ(p)

)
−

∂2 f̂
dx j dxi

(
ϕ(p)

)
= 0,

using the fact that the mixed partials commute. �

Exercise A8.8. Using this lemma and the result of the pre-
vious exercise, compute the formula for the Lie bracket
[X,Y] in coordinates, if X =

∑
αi∂i and Y =

∑
βi∂i in a

chart (U, ϕ).

A9. Lie derivatives

Vector fields are defined as a way to take directional deriva-
tives of functions. If X ∈ X(M) and f ∈ C∞(M) then
(X f )(p) = Xp f is the directional derivative of f along the
flow lines of X. That is, if γ = γp is the integral curve of X
through p and θ its (local) flow, then

Xp f =
d
dt

∣∣∣∣∣
t=0

f
(
γ(t)

)
=

d
dt

∣∣∣∣∣
t=0

f
(
θt(p)

)
.

Now suppose we want to take a derivative of a vector
field Y along a curve γ. The problem is that for each
q = γ(t), the vector Yq lives in a different tangent space
Tq(M). So we cannot compare these vectors or ask for
their rate of change along γ without some sort of addi-
tional information. Later in the course, we will introduce
the notion of a “connection” (for instance coming from a
Riemannian metric), which does allow us to differentiate
a vector field along a curve. But Lie suggested a different
approach. Suppose we have not just one (integral) curve
γp but a whole vector field X and its associated local flow
around p. Then we can use

Dpθt = θt∗ : TpM → Tθt pM

to identify the tangent spaces along the integral curve γp.
In particular, for each t (in the interval (−ε, ε) of definition)
we have (θ−t)∗

(
Yθt p

)
∈ TpM.

Definition A9.1. If X,Y ∈ X(M) then the Lie derivative
[DE: Lie-Ableitung] LXY of Y with respect to X is the vector
field defined by

(
LXY)p :=

d
dt

∣∣∣∣∣
t=0
θ−t∗

(
Yθt p

)
∈ TpM,

where θ is the local flow of X.

It would be straightforward but tedious to check in coor-
dinates that this is a smooth vector field. For us, that will
follow from the theorem below, saying that the Lie deriva-
tive is nothing other than the Lie bracket:

LXY = [X,Y] = −[Y, X] = −LY X.

For this we first need the following lemma, a modification
of the Taylor-type lemma we used to prove TpR

m � Rm.

Lemma A9.2. Suppose a vector field X ∈ X(M) has local
flow θ : (−ε, ε) × V → M around p ∈ M. Given any f ∈
C∞(M), there exists a smooth function g : (−ε, ε)×V → R,
which we write as (t, q) 7→ gt(q), such that

f
(
θt(q)

)
= f (q) + tgt(q), Xq f = g0(q).

Proof. First we define ht(q) := d
dt f

(
θt(q)

)
= Xθtq f , and

then we set gt(q) :=
∫ 1

s=0 hst(q) ds. For t = 0 this clearly
means g0(q) = h0(q) = Xq f . Using a change of variables
and the fundamental theorem of calculus, for arbitrary t we
get tgt(q) = f

(
θt(q)

)
− f (q) as desired. �
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Theorem A9.3. For any vector fields X,Y on M, the Lie
derivative and Lie bracket coincide, that is, we have LXY =

[X,Y].

Proof. Suppose f ∈ C∞(p) is a germ at p ∈ M. We want
to show

(
LXY

)
p f = [X,Y]p f . Choose a representative

f ∈ C∞(U) for the germ and use the lemma (applied to the
manifold U) to find gt such that g0 = X f and f ◦θt = f +tgt,
or negating t as we will, f ◦ θ−t = f − tg−t. Then starting
from the definition of LXY we find(

LXY
)

p f = lim
t→0

1
t

((
θ−t∗Yθt p

)
f − Yp f

)
= lim

t→0

1
t

(
Yθt p

(
f ◦ θ−t

)
− Yp f

)
= lim

t→0

1
t

(
Yθt p

(
f − tg−t

)
− Yp f

)
=

d
dt

∣∣∣∣∣
t=0

(
Yθt p f

)
− lim

t→0
Yθt pg−t

=
d
dt

∣∣∣∣∣
t=0

(
Y f

)(
θt(p)

)
− Ypg0

= Xp(Y f ) − Yp(X f ) = [X,Y]p f �

Exercise A9.4. Suppose f : Mm → Nn is a smooth map
and Y ∈ X(N) is f -related to X ∈ X(M) while Y ′ is f -
related to X′. Then [Y,Y ′] is f -related to [X, X′].

2024 November 4: End of Lecture 7

A10. Vector bundles

When we defined the tangent bundle T M of a manifold
Mm, we mentioned that it is a specific example of a smooth
vector bundle over M, with fibers the tangent spaces TpM.
In general, a bundle over a base space [DE: Basisraum] M
consists of a total space [DE: Totalraum] E with a projec-
tion π : E → M. When there is no confusion, we often
refer to E as the bundle. The fiber [DE: Faser] over p ∈ M
is simply the preimage Ep := π−1{p}. If S ⊂ M, we write
ES := π−1(S ) for the restriction [DE: Einschränkung] of E
to S , that is, the bundle π|ES : ES → S . If π : E → M and
π′ : E′ → M are two bundles, then ϕ : E → E′ is fiber-
preserving if π′ ◦ ϕ = π, that is, if ϕ(Ep) ⊂ E′p for each
p.
Of course, we only call π : E → M a bundle if the fibers are
all isomorphic (in an appropriate sense, to some F); and if
E is locally trivial, locally looking like a product with F.
We now give a precise definition for the case of interest
here.

Definition A10.1. A (smooth, real) vector bundle [DE:
(glattes, reelles) Vektorbündel] of rank [DE: Rang] k is a
map π : Em+k → Mm of manifolds such that

• each fiber π−1(p) is a (real) vector space of dimen-
sion k,
• each point in M has a trivializing neighborhood U,

meaning there is a fiber-preserving diffeomorphism
π−1(U) =: EU → U × Rk that is a vector space iso-
morphism on each fiber.

Exercise A10.2. If Mm ⊂ Nn is a submanifold and π : E →
N is a vector bundle of rank k over N, then the restriction
EM is a vector bundle of rank k over M.
Example A10.3. There is a nontrivial vector bundle of
rank 1 over S1; its total space is an open Möbius band.
Remark A10.4. The tangent bundle T M is a rank-m bun-
dle over Mm. Any coordinate chart (U, ϕ) is a trivializing
neighborhood where the fiber-preserving diffeomorphism
is

(π,Dϕ) : Xp 7→
(
p,Dpϕ(Xp)

)
.

The restriction Dpϕ : TpM → Rm to each fiber is indeed
linear.

Now suppose π : E → M is any vector bundle. We can
cover M by open sets U that are (small enough to be)
both coordinate charts for the manifold M and trivializing
neighborhoods for the bundle E. That is, we have diffeo-
morphisms ϕ : U → ϕ(U) ⊂ Rm and ψ : EU → U × Rk,
the latter being fiber-preserving and linear on each fiber.
Composing these gives a diffeomorphism

(ϕ, id) ◦ ψ : EU → ϕ(U) × Rk ⊂ Rm+k,

which is a coordinate chart for the (m + k)-manifold E.

Definition A10.5. A section [DE: Schnitt] of a vector bun-
dle π : E → M is a smooth map σ : M → E such that
π ◦ σ = idM , meaning σ(p) ∈ Ep for each p ∈ M. The
space of all (smooth) sections is denoted Γ(E).

Vector fields, for example, are simply sections of the tan-
gent bundle: X(M) = Γ(T M). As in that example, Γ(E)
is always a module over C∞(M), using pointwise addition
and scalar multiplication: if σ, τ ∈ Γ(E) and f ∈ C∞M,
then σ + f τ is defined pointwise by

(σ + f τ)p = σp + f (p)τp ∈ Ep.

Sometimes we talk about local sections σ ∈ Γ(EU) that
are not defined globally on all of M but only on a subset
U ⊂ M. A trivialization of E over U is equivalent to a
frame [DE: Rahmen], that is, a set of k sections σi ∈ Γ(EU)
such that at each p ∈ U, the σi(p) form a basis for Ep.
Operations on vector spaces yield corresponding opera-
tions (acting fiberwise) on vector bundles. For instance,
if E → M and F → M are two vector bundles over M
(having rank k and l, respectively) then their direct sum (or
Whitney sum [DE: Whitney-Summe]) E⊕F → M is a vector
bundle of rank k+l, where we have (E⊕F)p = Ep⊕Fp fiber-
wise. Any neighborhood which trivializes both E and F
will trivialize their sum.

A11. Dual spaces and one-forms

We next turn to various constructions on a single vector
space V . Even though much of what we say could extend
to arbitrary spaces, we assume V is a real vector space of
finite dimension k; later it will be a tangent space to a man-
ifold.
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The dual space [DE: Dualraum] V∗ := L(V,R) is defined
to be the space of all linear functionals V → R (also called
covectors [DE: Kovektoren]). The dual space V∗ is also k-
dimensional.
As we have mentioned before, a linear map L : V → W
induces a dual linear map L∗ : W∗ → V∗ in the opposite
direction, defined naturally by (L∗σ)(v) = σ(Lv). This
construction is functorial in the sense that id∗ = id and(
L ◦ L′

)∗
= (L′)∗ ◦ L∗. One can check that L is surjective if

and only if L∗ is injective, and vice versa.
While there is no natural isomorphism V → V∗, any basis
{e1, . . . , ek} for V determines a dual basis [DE: duale Basis]
{ω1, . . . , ωk} for V∗ by setting

ωi(e j) = δi
j =

0, i , j,
1, i = j.

The covector ωi is the functional that gives the ith compo-
nent of a vector in the basis {ei}, that is, v =

∑
ωi(v)ei,

which we could also write as vi = ωi(v). Similarly,
σ =

∑
σ(ei)ωi.

There is a natural isomorphism V → V∗∗, where v ∈ V
induces the linear functional σ 7→ σ(v) on V∗. Given a
linear map L : V → W, we have L∗∗ = L.
Applying duality to each fiber Ep of a vector bundle gives
the dual bundle [DE: duales Bündel] E∗ with (E∗)p =

(Ep)∗. It is trivialized over any trivializing neighborhood
for E, as one sees by choosing a frame and taking the dual
frame.
Applying duality to TpM gives the cotangent space [DE:
Kotangentialraum] T ∗pM to M at p. These fit together
to form the cotangent bundle [DE: Kotangentialbündel]
T ∗M = (T M)∗, which (just like the tangent bundle) is triv-
ialized over any coordinate neighborhood.
A (smooth) section ω of the cotangent bundle is called a
covector field [DE: Kovektorfeld] or more often a (differen-
tial) one-form. We write Ω1(M) = Γ(T ∗M) for the space
of all sections. A one-form ω ∈ Ω1(M) acts on a vector
field X ∈ X(M) to give a smooth function ω(X) ∈ C∞(M)
via (ωX)(p) = ωp(Xp) ∈ R. In a coordinate chart (U, ϕ) we
have the basis vector fields ∂i; taking the dual basis point-
wise we get the basis one-forms dxi satisfying dxi(∂ j) ≡ δi

j.
Any one-form σ ∈ Ω1(U) can be written as σ =

∑
σidxi,

where the components σi = σ(∂i) ∈ C∞U are smooth
functions.
An important way to construct one-forms is as the differen-
tials of functions. If f ∈ C∞M then Dp f : TpM → T f (p)R,
under the identification TtR � R, can be thought of as a
covector d fp at p. If X ∈ X(M) is a vector field, then
d f (X) = X f , meaning d fp(Xp) = Xp f for each p ∈ M.
While Xp f depends on the germ of f at p, it only depends
on the value of d f at the point p: the covector d fp encodes
exactly all the directional derivatives of f at p.
Note that the notation dxi we used above for the coordinate
basis one-forms in a coordinate chart (U, ϕ) is consistent:
these are indeed the differentials of the coordinate compo-
nent functions xi := πi ◦ ϕ : U → R. In coordinates, we
have d f =

∑
(∂i f )dxi, where we recall that ∂i f is the ith

partial derivative of the coordinate expression f ◦ϕ−1 of f .

An interesting example is the one-form we call dθ on S1.
We cover S1 ⊂ R2 with coordinate charts of the form

(cos θ, sin θ) 7→ θ ∈ (θ0, θ0 + 2π).

On each such chart, we write dθ for the coordinate basis
one-form (which would also be called dx1); then we note
that on the overlaps, these forms dθ agree (independent of
the omitted point θ0).
Unlike for most manifolds, the tangent bundle TS1 is
(globally) trivial; thus T ∗S1 is also trivial. Any one-form
is written as f dθ for some smooth function f . The form dθ
can be thought of as dual to the vector field (− sin θ, cos θ)
on S1, which is ∂1 in any of the charts above.
The notation dθ is slightly confusing, since this one-form
is not globally the differential of any smooth function θ
on S1. Thus on S1, this is a one-form which is “closed”
but not “exact”, meaning that dθ looks like a differential
locally but not globally. This shows, in a sense we may
explore later, that the space S1 has nontrivial “first coho-
mology”, that is, that it has a one-dimensional loop.

2024 November 5: End of Lecture 8

One forms are in some sense similar to vector fields, but
we will see later how they (as well as differential forms of
higher degree) are often more convenient. This is mainly
because, while a map f : M → N does not in general act
on vector fields, it can be used to pull one-forms on N back
to M. To see this, note that

f∗ = Dp f : TpM → T f (p)N

at each p ∈ M induces a dual map

f ∗ := (Dp f )∗ : T ∗f (p)N → T ∗pM.

Given ω ∈ Ω1(N), we define f ∗ω ∈ Ω1(M) by ( f ∗ω)p =

f ∗(ω f (p)) ∈ T ∗pM.

A special case is the restriction ω|M of a form ω ∈ Ω1N
to a submanifold Mm ⊂ Nn, which is simply the pullback
under the inclusion map. For any Xp ∈ TpM ⊂ TpN at any
p ∈ M ⊂ N we of course simply have ω|M(Xp) = ω(Xp).

A12. Bilinear forms and Riemannian metrics

A bilinear map b : V×V → R is called a bilinear form [DE:
Bilinearform] on V . If {e1, . . . , ek} is a basis for V , then b
is given by bi j = b(ei, e j): if v =

∑
viei and w =

∑
wiei

then b(v,w) =
∑

i, j bi jviw j. The bilinear form b is called
symmetric [DE: symmetrisch] if b(w, v) = b(v,w) (i.e., if
bi j = b ji) and antisymmetric [DE: antisymmetrisch] or al-
ternating [DE: alternierend] if b(w, v) = −b(v,w) (i.e., if
bi j = −b ji). Any bilinear form b can be uniquely decom-
posed b = b+ + b− into a symmetric part b+ and an anti-
symmetric part b−, defined by 2b±(v,w) = b(v,w)±b(w, v).
Given a linear map L : V → W, we can pull back any bi-
linear form b on W to a bilinear form L∗b on V , defined by
(L∗b)(v, v′) = b(Lv, Lv′).
We will consider antisymmetric differential forms later.
For now we restrict attention to symmetric bilinear forms
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on V . These are in one-to-one correspondance with
quadratic forms q : V → R. If we set q(v) := b(v, v), this
depends only on the symmetric part of b, and we can re-
cover a symmetric b from q via the formula

2b(v,w) := q(v + w) − q(v) − q(w).

(Note that much of our discussion would fail for vector
spaces over fields of characteristic 2, where 2 = 0.)
A symmetric bilinear form b (or the associated quadratic
form q) is called positive semidefinite [DE: positiv
semidefinit] if q(v) = b(v, v) ≥ 0 for all v ∈ V . It is called
positive definite [DE: positiv definit] if q(v) = b(v, v) > 0
for all v , 0. A positive definite form on V is also called an
inner product [DE: inneres Produkt] (or scalar product [DE:
Skalarprodukt]) on V . An inner product is what we need
to define the geometric notions of length [DE: Länge] (or
norm [DE: Norm]) ‖v‖ :=

√
b(v, v) and angle [DE: Winkel]

∠(v,w) := arccos
b(v,w)
‖v‖ ‖w‖

between vectors in V . The pullback L∗b of a positive defi-
nite form is always positive semidefinite; it is positive def-
inite if and only if L is injective.
Of course the standard example of an inner product is the
Euclidean inner product b(v,w) = 〈v,w〉 =

∑
viwi on Rm,

given (with respect to the standard basis) by the identity
matrix bi j = δi j.
If V has dimension k, then the quadratic forms on V form
a vector space Q(V) of dimension

(
k+1

2

)
. The positive defi-

nite forms form an open convex cone in this vector space,
whose closure consists of all positive semidefinite forms.
(A convex cone is a set closed under taking positive linear
combinations.)
Again, we can apply this construction to the fibers of any
vector bundle E. If E has rank k, then Q(E) has rank

(
k+1

2

)
.

In case of the tangent bundle T M to a manifold Mm, we get
a vector bundle Q(T M) of rank

(
m+1

2

)
. A positive definite

section g ∈ Γ
(
Q(T M)

)
is called a Riemannian metric [DE:

Riemann’sche Metrik] on M. It consists of an inner product〈
Xp,Yp

〉
:= gp(Xp,Yp) on each tangent space TpM, which

lets us measure length and angles between tangent vectors
at any p ∈ M.
In a coordinate chart (U, ϕ), the metric g is given by com-
ponents gi j := g(∂i, ∂ j) ∈ C∞(U) so that

g
(∑

αi∂i,
∑

β j∂ j

)
=

∑
i, j

gi jα
iβ j.

The matrix (gi j) is of course symmetric and positive defi-
nite at each p ∈ U.
The standard Riemannian metric g on the manifold Rm

comes from putting the standard Euclidean inner product
on each TpR

m = Rm. That is, in the standard chart (Rm, id)
we have gi j = δi j.
If f : Mm → Nn is a smooth map, then we can pull back
sections of Q(T N) to sections of Q(T M) in the natural
way:

( f ∗g)(Xp,Yp) := g( f∗Xp, f∗Yp).

If g is a Riemannian metric, then of course f ∗g will be
positive semidefinite at each p ∈ M, but it will be a Rie-
mannian metric if and only if f is an immersion (meaning
that Dp f is injective for every p ∈ M, and in particular
m ≤ n). Again, an important special case of this pull-back
metric is when f is the inclusion map of a submanifold;
then we speak of restricting the Riemannian metric g on N
to g|M on the submanifold M ⊂ N.
In particular, the standard metric on Rn restricts to give a
Riemannian metric on any submanifold Mm ⊂ Rn. Last
semester, we studied the case m = 2, n = 3, and called this
metric g(v,w) = 〈v,w〉 the first fundamental form.

A13. Partitions of unity

The sections of any vector bundle E → M form a vec-
tor space. In particular, there is always the zero section
σp = 0 ∈ Ep. An interesting question is whether there is
a nowhere vanishing section. A trivial bundle M × Rr of
course has many nonvanishing sections, for instance any
nonzero constant section. Sometimes it turns out that the
tangent bundle T M is trivial – this happens for instance
for S1 or more generally for the m-torus T m. Other times,
there is no nonvanishing section of T M. For instance the
Hopf index theorem shows this is the case for any closed
orientable surface M2 other than the torus T 2. Over S1

there is also a nontrivial line bundle, whose total space is
topologically a Möbius band. It is not hard to check that
this bundle has no nonvanishing section.
From this point of view, it might be surprising that the
bundle Q(T M) has nonvanishing sections for any mani-
fold Mm, indeed sections which are positive definite ev-
erywhere. In other words, any manifold M can be given
a Riemannian metric. This follows from the fact that any
manifold can be embedded in Rn for sufficiently large n,
or can be proven more directly by taking convex combi-
nations of standard metrics in different coordinate charts.
Either of these approaches requires the technical tool of a
partition of unity, a collection of locally supported func-
tions whose sum is everywhere one. This gives a general
method for smoothly interpolating between different local
definitions. We do not want to get into questions of sum-
ming infinite sequences; thus we impose a local finiteness
condition.

Definition A13.1. A collection {S α} of subsets of a topo-
logical space X is called locally finite [DE: lokal endlich] if
each p ∈ X has a neighborhood that intersects only finitely
many of the S α.

Definition A13.2. The support [DE: Träger] supp f of a
function f : X → Rn is the closure of the set where f ,
0. (Similarly we can talk about the support of a section
σ : M → E of a vector bundle.)

Lemma A13.3. If fα : M → R are smooth functions such
that {supp fα} is locally finite, then

∑
fα defines a smooth

function M → R.

Proof. The local finiteness means that each p ∈ M has a
neighborhood U which meets only a finite number of the
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supp fα. On U, the sum
∑

fα is thus a sum of a fixed finite
collection of smooth functions, hence smooth. �

Note that saying the collection of supports supp fα is lo-
cally finite is stronger than saying each p ∈ M is contained
in finitely many supp fα, which in turn is stronger than say-
ing only finitely many fα are nonzero at each p ∈ M. This
would suffice to evaluate

∑
fα(p) as a finite sum at each p.

The stronger conditions ensure that the sum is a smooth
function.

Definition A13.4. A (smooth) partition of unity [DE: Zer-
legung der Eins] on a manifold M is a collection of smooth
functions ψα : M → R such that

• ψα ≥ 0,

• {suppψα} is locally finite,

•
∑
ψα ≡ 1.

A trivial example is the single constant function 1. The
interest in partitions of unity comes from examples where
the support of each ψα is “small” in some prescribed sense.

Definition A13.5. Given an open cover {Uα}, a partition of
unity {ψβ} is subordinate [DE: untergeordnet] to the cover
{Uα} if for each β there exists α = α(β) such that the sup-
port suppψβ is contained in Uα(β).

Note that if we want, we can then define a new partition
of unity {ψ̄α} also subordinate to {Uα} and now indexed by
the same index set. Simply set ψ̄α to be the sum of those
ψβ for which α = α(β). (Note that this might not be the
sum of all ψβ supported in Uα. It is also possible that some
ψ̄α vanishes.)
To give the flavor of results about partitions of unity, we
start with the easy case of a compact manifold.

Proposition A13.6. Given any open cover {Uα} of a com-
pact manifold Mm, there exists a partition of unity subor-
dinate to this cover.

2024 November 11: End of Lecture 9

Proof. For each p ∈ M, we have p ∈ Uα for some
α = α(p), and we can choose a smooth nonnegative func-
tion fp supported in Uα with fp > 0 on some neighbor-
hood Vp 3 p. Since M is compact, a finite subcollection{
Vp1 , . . . ,Vpk

}
covers M. Then f :=

∑
i fpi is a positive

smooth function on M, so we can define a finite collec-
tion of smooth functions ψi := fpi/ f . These form a (finite)
partition of unity, subordinate to the given cover. �

All manifolds have a related property called paracompact-
ness, which will be enough to extend this result.

Definition A13.7. An open cover {Vβ} is a refinement [DE:
Verfeinerung] of another open cover {Uα} if each Vβ is
contained in some Uα. A space X is paracompact [DE:
parakompakt] if every open cover has a locally finite re-
finement.

(Note that this weakens the definition of “compact” in two
ways, replacing “finite” by “locally finite” and replacing
“subcover” by “refinement”. If we made just one of these
changes (asking for a locally finite subcover or for a fi-
nite refinement) we would still just be describing compact
spaces. Only by making both changes do we get a new
notion.)

Example A13.8. The cover
{
(−n, n) : n ∈ N+

}
of R is not

locally finite, but any cover of R by bounded open sets is
a refinement, so for instance

{
(k − 1, k + 1) : k ∈ Z

}
is a

locally finite refinement.

A standard result in point set topology says that any sec-
ond countable, locally compact Hausdorff space is para-
compact. It is also true that any metric space is paracom-
pact. Some authors replace “second countable” by “para-
compact” in the definition of manifold, which makes no
difference except for allowing uncountably many compo-
nents. (The long line, for instance, is not paracompact.)
It is known that a topological space X admits a continuous
partition of unity subordinate to any given open cover if
and only if X is paracompact and Hausdorff. (The “only
if” direction is relatively easy: for instance if {ψβ} is sub-
ordinate to {Uα}, then the sets Vβ := {x : ψβ(x) > 0} form
a locally finite refinement.) We will, however, explicitly
prove what we need for manifolds.

Lemma A13.9. Every manifold M has a countable base
consisting of coordinate neighborhoods with compact clo-
sure.

Proof. Start with any countable base {Bi} and let B be the
subcollection of those Bi that are contained in some co-
ordinate neighborhood and have compact closure. Now
suppose we are given an open subset W ⊂ M and a point
p ∈ W. Choose a coordinate chart (U, ϕ) around p such
that

U ⊂ W, ϕ(p) = 0, B2(0) ⊂ ϕ(U)

and set V := ϕ−1(B1(0)
)
. Then V has compact closure

V ⊂ U. Since {Bi} is a base, for some i we have

p ∈ Bi ⊂ V ⊂ U ⊂ W.

But then this Bi is also contained with compact closure
in the coordinate neighborhood U; thus Bi ∈ B. Since p
and W were arbitrary, this shows B is a base. �

Lemma A13.10. Every manifold M has a “compact ex-
haustion”, indeed a nested family of subsets

∅ , W1 ⊂ W1 ⊂ W2 ⊂ W2 ⊂ · · ·

with Wk open and Wk compact, whose union is M.

Proof. Choose a countable base {Bi} as in the last lemma.
We will choose 1 = i1 < i2 < · · · and set Wk :=

⋃ik
i=1 Bi.

These automatically have compact closure and are nested.
We just need to choose each ik large enough that Wk ⊃

Wk−1. But this is possible, since Wk−1 is compact and thus
covered by some finite collection of the Bis. Finally, since
ik ≥ k we have that Wk ⊃ Bk so

⋃
Wk ⊃

⋃
Bk = M. �
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Corollary A13.11. Given a manifold M, we can find
countable families of subsets Ki ⊂ Oi ⊂ M, for i ∈ N+,
with Ki compact, Oi open,

⋃
Ki = M, and {Oi} locally

finite.

Proof. Using the nested Wi from the lemma, simply set
Ki := W i r Wi−1 and Oi := Wi+1 r W i−2 (where we take
W0 = ∅ = W−1). The local finiteness follows from the fact
that any p is contained in some W j+1 rW j−1, which meets
only four of the Oi. �

Corollary A13.12. Any manifold M is paracompact.

Proof. Suppose {Uα} is an open cover. Choose Oi and Ki
as in the last corollary. For each i, the compact set Ki is
covered by the sets Oi ∩ Uα, and thus by a finite subcol-
lection, which we name O j

i for j = 1, . . . , ki. The union of
these finite collections, over all i, is a locally finite refine-
ment. �

We are now set up to adapt the construction of partitions
of unity from the compact case to the general case.

Theorem A13.13. Given any cover {Uα} of a manifold
M, there exists a partition of unity {ψi} subordinate to this
cover.

Proof. Find Ki ⊂ Oi as above. Fixing i, for each p ∈ Ki we
have p ∈ Uα ∩ Oi for some α = α(p). Choose a smooth
nonnegative fp with support in Uα ∩ Oi such that fp > 0
on some neighborhood Vp 3 p. Finitely many of these
neighborhoods cover the compact set Ki. Now letting i
vary, we have a countable family of bump functions f j

i ,
whose supports form a locally finite family. Thus dividing
by their well-defined, positive, smooth sum gives a parti-
tion of unity. �

Note that if K ⊂ M is compact, then for any partition of
unity {ψi} for M, only finitely many ψi have support meet-
ing K. (Each p ∈ K has a neighborhood meeting only
finitely many suppψi; by compactness finitely many such
neighborhoods cover K.)

A14. Applications of partitions of unity

Now we turn to some applications of these ideas. Note that
if {ψα} is a partition of unity subordinate to a cover {Uα}

and we have functions fα ∈ C∞(Uα), then ψα fα defines
a smooth function on M supported in Uα. Then

∑
ψα fα

makes sense as a locally finite sum of smooth functions.
The same works for sections of any vector bundle E → M:
local sections σα ∈ Γ

(
EUα

)
can be combined to get a global

section
∑
ψασα ∈ Γ(E).

Theorem A14.1. Any manifold Mm admits a Riemannian
metric.

Proof. Let g0 denote the standard (flat) Riemannian metric
on Rm. Let

{
(Uα, ϕα)

}
be an atlas for M. In each chart

the pullback gα := ϕ∗α(g0) is a Riemannian metric on Uα.

Now let {ψα} be a partition of unity subordinate to {Uα}.
We can consider each ψαgα as a global section of Q(T M),
supported of course in Uα. Then

∑
ψαgα is a Riemannian

metric on M, since locally near any point it is a convex
combination of finitely many Riemannian metrics gα. �

2024 November 12: End of Lecture 10

An alternative proof of the existence of Riemannian met-
rics simply uses the fact that any manifold Mm can be em-
bedded in Rn for large enough n.
It is not too hard to show that n = 2m + 1 actually suf-
fices – a generic orthogonal projection from higher dimen-
sions to dimension 2m + 1 will still give an embedding –
but we omit such discussions. Harder is the Whitney trick
used to get down to n = 2m. Most manifolds actually em-
bed in R2m−1 – the only exceptions (besides S1) are closed
nonorientable manifolds of dimension m = 2k, like closed
nonorientable surfaces.
We will restrict to compact manifolds and not attempt to
get an optimal n. Rather than using a partition of unity
directly, we will repeat the easy proof of the compact case,
using some of the functions involved in the construction
directly.
The following theorem is also true in the noncompact case;
the proof uses decompositions like the Ki and Oi in Corol-
lary A13.11 above, but requires knowing that each com-
pact piece can be embedded in the same dimension, say in
R2m+1.

Theorem A14.2. Any compact manifold Mm can be em-
bedded in some Euclidean space Rn.

Proof. For each point p ∈ M, find a nonnegative function
fp : M → R with f ≡ 1 in some neighborhood Vp 3 p and
with support in a coordinate chart (Up, ϕp). By compact-
ness, a finite number of the Vp suffice to cover M. Call
these points p1, . . . , pk and simply use the indices 1, . . . k
for the associated objects. Define a map g : M → Rkm+k as
follows:

g(p) :=
(
f1(p)ϕ1(p), . . . , fk(p)ϕk(p), f1(p), . . . , fk(p)

)
.

On Vi we have fi ≡ 1, so the ith “block” in g equals ϕi, with
injective differential. Thus g is an immersion on each Vi,
thus on all of M. By compactness, it only remains to show
that g is injective. If g(p) = g(q) then in particular we have
fi(p) = fi(q) for all i. Choose i such that p ∈ Vi ⊂ Ui.
Since fi(p) = 1, we have fi(q) = 1, which implies q ∈ Ui.
But then we also have

ϕi(p) = fi(p)ϕi(p) = fi(q)ϕi(q) = ϕi(q).

Since ϕi is injective on Ui, it follows that p = q. �

A15. Riemannian manifolds as metric spaces

We fix a Riemmanian manifold (M, g), that is, a smooth
manifold Mm with a fixed Riemannian metric g. Where
convenient, we write

〈
Xp,Yp

〉
:= gp(Xp,Yp) for the inner
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product and ‖Xp‖ :=
√〈

Xp, Xp
〉

for the length of a tangent
vector.

Definition A15.1. Suppose γ : [a, b] → M is a piecewise
smooth curve. The length [DE: Länge] of γ (with respect
to the Riemmanian metric g) is

len(γ) :=
∫ b

a
‖γ′(t)‖ dt.

Note that by the chain rule, this length is invariant under
reparametrization. The arclength function along γ is

s(t) := len
(
γ|[a,t]

)
=

∫ t

a
‖γ′(t)‖ dt.

and – assuming γ is a piecewise immersion – we can
reparametrize γ by arclength so that ‖γ′(s)‖ ≡ 1.
Note that if the standard Riemannian metric on Rn is re-
stricted to a submanifold Mm, then the length of a curve γ
in M as defined above is the same as its length in Rn as
considered last semester.

Definition A15.2. The distance [DE: Abstand] between
two points p, q ∈ M is the infimal length

d(p, q) := inf
γ

len(γ)

taken over all piecewise smooth curves γ in M from p to q.

Note that we could easily apply our definition of length
to more general curves, say to all rectifiable or Lipschitz
curves. Since any curve can be smoothed, in the infimum
defining d it is not important whether we allow all recti-
fiable curves or restrict to smooth curves. We have cho-
sen an option in the middle. Note that (no matter which
smoothness class is chosen) the infimum is not always re-
alized, as one sees for instance if M = R2 r {0}.
The theorem below will show that (M, d) is a metric space
compatible with the given topology on M. Of course when
M is not connected, points p and q in different components
are not connected by any path, so d(p, q) = +∞ by the
above definition. It is easiest to use a definition of metric
spaces that allows infinite distance. If this is not desired,
the following discussion should be restricted to connected
manifolds. Note that a connected component of a man-
ifold is automatically path-connected; any pair of points
can actually be joined by a smooth path, whose length is
necessarily finite.
A few properties of d are immediate. The constant path
shows that d(p, p) = 0. The inverse path shows that
d(p, q) = d(q, p). Concatenating paths gives the triangle
inequality d(p, r) ≤ d(p, q) + d(q, r). (This is one reason
we chose to allow piecewise smooth paths.) That is, we
see easily that d is a pseudometric, and to see it is a metric
we just need to show that d(p, q) = 0 holds only for p = q.

Lemma A15.3. Consider Rm with the standard Rieman-
nian metric. Then d(p, q) = ‖p − q‖.

Proof. Since both sides are clearly translation invariant, it
suffices to consider q = 0. It is easy to compute the length

of the straight path from p to 0 as ‖p‖. We must show no
other path has less length (and may assume p , 0). So
suppose γ(0) = p and γ(1) = 0. We may assume γ(t) , 0
for t < 1, since otherwise we replace γ by γ|[0,t], which is
not longer. Thus for t < 1 we can write γ(t) = r(t)β(t)
where ‖β(t)‖ = 1 and r(t) > 0. We have r(0) = ‖p‖ and
r(t) → 0 as t → 1. Since 〈β, β〉 ≡ 1, we get 〈β, β′〉 ≡ 0.
The product rule γ′ = r′β + rβ′ then gives

‖γ′‖2 = |r′|2‖β‖2 + r2‖β′‖2 ≥ |r′|2.

Thus∫ 1

0
‖γ′‖ dt ≥

∫ 1

0
|r′| dt ≥

∣∣∣∣∣∫ 1

0
r′ dt

∣∣∣∣∣ = r(0) − r(1) = ‖p‖

as desired. �

Two norms on a vector space induce the same topology if
and only if they are equivalent in the sense that they differ
by at most a constant factor. For finite dimensional vector
spaces, all norms are equivalent. We sketch a proof of the
case we need.

Lemma A15.4. Any two inner products on Rm induce
equivalent norms.

Proof. Let ‖v‖ denote the standard Euclidean norm, and
let

∑
gi jviw j denote an arbitrary inner product on Rm. On

the compact unit sphere Sm−1 = {v : ‖v‖ = 1} the other
norm

√∑
gi jviv j achieves its minimum c > 0 and its max-

imum C. Then by homogeneity, we have

c‖v‖ ≤
√∑

gi jviv j ≤ C‖v‖

for all v, as desired. We note that these optimal constants
depend continuously on the coefficients of g. �

Corollary A15.5. Suppose g is a Riemannian metric on
an open set U ⊂ Rm and K ⊂ U is compact. Then there
exist constants 0 < c ≤ C < ∞ such that

c‖v‖ ≤
√

g(v, v) ≤ C‖v‖

for all p ∈ K and all v ∈ TpU = TpR
m � Rm. In particular,

for any curve γ in K from p to q we have

c‖p − q‖ ≤ c len0 γ ≤ leng γ ≤ C len0 γ,

where len0 is the length relative to the standard Euclidean
metric and leng is the length relative to g.

Proof. For each p ∈ K the lemma gives us cp ≤ Cp. As-
suming we choose the optimal constants at each point, they
depend continuously on gp thus continuously on p. By
the compactness of K, we can set c := minK cp > 0 and
C := maxK Cp < ∞. Integrating the bounds for tangent
vectors gives the final statement for any curve γ. �

This corollary gives the key uniformity needed for the fol-
lowing theorem.
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Theorem A15.6. Let (M, g) be a Riemannian manifold.
With the distance function d above, it is a metric space
(M, d). The metric topology agrees with the given manifold
topology on M.

Proof. We have noted that d is symmetric and satisfies the
triangle inequality. We must prove d(p, q) = 0 =⇒ p = q
and show that the topologies agree.
Let D denote the closed unit ball in Rm. Given p , q in M,
we can find coordinates (U, ϕ) around p such that ϕ(p) = 0,
ϕ(U) ⊃ D and q < ϕ−1(D). On D use the last corollary to
get c,C comparing the pullback metric g̃ :=

(
ϕ−1)∗g with

the standard Euclidean metric. Any path from p to q must
first leave ϕ−1D. Its g-length is at least the g-length of this
initial piece, which is the g̃-length of its image α. Since
α connects 0 to ∂D, it has Euclidean length at least 1, so
g̃-length at least c. Since this is true for any path from p
to q, we find d(p, q) ≥ c > 0.
Rephrasing what we have just proved in the contrapositive,
we see that d(p, q) < c implies that ϕ(q) ∈ D. Rescaling,
this means that any Euclidean ball in a coordinate chart
contains a small metric ball. Thus open sets in the mani-
fold topology are open in the metric topology.
To get the converse, consider again coordinates around p
with D ⊂ ϕ(U), and find C as in the corollary, comparing
the pullback metric g̃ to the Euclidean metric in D. For
any ε < C, if ϕ(q) is in the Euclidean ε/C-ball around 0 =

ϕ(p), then ϕ(p) and ϕ(q) can be joined by a straight line
of Euclidean length less than ε/C < 1, and hence g̃-length
less than ε. Thus p and q can be joined by the preimage
path, of g-length less than ε. That is, the metric ε-ball
around p contains the Euclidean ε/C-ball in the coordinate
chart. �

2024 November 18: End of Lecture 11
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B. DIFFERENTIAL FORMS

We have already seen one-forms (covector fields) on a
manifold. In general, a k-form is a field of alternating k-
linear forms on the tangent spaces of a manifold. Forms
are the natural objects for integration: a k-form can be in-
tegrated over an oriented k-submanifold. We start with ten-
sor products and the exterior algebra of multivectors.

B1. Tensor products

For simplicity, we work only with finite-dimensional real
vector spaces. (Infinite dimensional vector spaces are most
useful when equipped with a topology and – just as with
the dual space – purely algebraic constructions like ten-
sor products are of limited usefulness. They are usually
replaced by versions that depend on the topology.)
Recall that, if V , W and X are vector spaces, then a map
b : V ×W → X is called bilinear [DE: bilinear] if

b(v + v′,w) = b(v,w) + b(v′,w),
b(v,w + w′) = b(v,w) + b(v,w′),
b(av,w) = ab(v,w) = b(v, aw).

The function b is defined on the set V ×W. This Cartesian
product of two vector spaces can be given the structure of
a vector space V ⊕ W, the direct sum. But a bilinear map
b : V × W → X is completely different from a linear map
V ⊕W → X.
The tensor product space V ⊗W is a vector space designed
exactly so that a bilinear map b : V × W → X becomes a
linear map V ⊗W → X. More precisely, it can be charac-
terized abstractly by the following “universal property”.

Definition B1.1. The tensor product [DE: Tensorprodukt]
of vector spaces V and W is a vector space V ⊗ W with
a natural bilinear map V ×W → V ⊗W, written (v,w) 7→
v⊗w, with the property that any bilinear map b : V×W → X
factors uniquely through V ⊗ W. That means there exists
a unique linear map L : V ⊗ W → X such that b(v,w) =

L(v ⊗ w).

This does not yet show that the tensor product exists, but
uniqueness is clear: if X and Y were both tensor products,
then each defining bilinear map would factor through the
other – we get inverse linear maps between X and Y , show-
ing they are isomorphic.
Note that the elements of the form v⊗w must span V ⊗W,
since otherwise L would not be unique. If {ei} is a basis
for V and { f j} a basis for W then bilinearity gives(∑

i

viei

)
⊗

(∑
j

w j f j

)
=

∑
i, j

viw j ei ⊗ f j.

Clearly then {ei ⊗ f j} spans V ⊗W – indeed one can check
that it is a basis. This is a valid construction for the space
V ⊗W – as the span of the ei ⊗ f j – but it does depend on
the chosen bases. If dim V = m and dim W = n then we
note dim V ⊗W = mn.

A much more abstract construction of V ⊗W goes through
a huge infinite-dimensional space. Given any set S , the
free vector space [DE: freier Vektorraum] on S is the set of
all formal finite linear combinations

∑
aisi with ai ∈ R and

si ∈ S . (This can equally well be thought of as the set of
all real-valued functions on the set S which vanish outside
some finite subset.) For instance, if S has k elements this
gives a k-dimensional vector space with S as basis.
Given vector spaces V and W, let F be the free vector space
over the set V × W. (This is infinite dimensional – unless
both V and W are trivial – and consists of formal sums∑

ai(vi,wi). It ignores all the structure we have on the set
V ×W.) Now let R ⊂ F be the linear subspace spanned by
all elements of the form:

(v + v′,w) − (v,w) − (v′,w),
(v,w + w′) − (v,w) − (v,w′),

(av,w) − a(v,w), (v, aw) − a(v,w).

These correspond of course to the bilinearity conditions
we started with. The quotient vector space F/R will be the
tensor product V ⊗ W. We have started with all possible
v ⊗ w as generators and thrown in just enough relations to
ensure that the map (v,w) 7→ v ⊗ w is bilinear.
Of course v ⊗ v′ and v′ ⊗ v are in general distinct elements
of V ⊗ V . On the other hand there is a natural linear iso-
morphism V ⊗W → W ⊗V such that v⊗w 7→ w⊗ v. (This
is easiest to verify using the universal property – simply
factor the bilinear map (v,w) 7→ w ⊗ v through V ⊗ W to
give the desired isomorphism.)
Similarly, the tensor product is associative: there is a natu-
ral linear isomorphism V ⊗ (W ⊗ X)→ (V ⊗W) ⊗ X. Note
that any trilinear map from V ×W × X factors through this
triple tensor product V ⊗W ⊗ X.
Of special interest are the tensor powers [DE: Tensorpoten-
zen] of a single vector space V . We write V⊗k := V⊗· · ·⊗V .
If {ei} is a basis for V , then

{
ei1 ⊗· · ·⊗eik

}
is a basis for V⊗k.

In particular if V has dimension m, then V⊗k has dimen-
sion mk. There is a natural k-linear map Vk → V⊗k and any
k-linear map Vk → W factors uniquely through V⊗k.
One can check that the dual of a tensor product is the tensor
product of duals: (V ⊗ W)∗ = V∗ ⊗ W∗. In particular,
we have (V∗)⊗k = (V⊗k)∗. The latter is of course the set
of linear functionals V⊗k → R, which as we have seen is
exactly the set of k-linear maps Vk → R.

Definition B1.2. A graded algebra [DE: graduierte Alge-
bra] is a vector space A decomposed as A =

⊕∞

k=0 Ak to-
gether with an associative bilinear multiplication operation
A × A → A that respects the grading in the sense that the
product ω · η of elements ω ∈ Ak and η ∈ A` is an element
of Ak+`. Often we consider graded algebras that are either
commutative or anticommutative. Here anticommutative
[DE: antikommutativ] has a special meaning: for ω ∈ Ak
and η ∈ A` as above, we have ω · η = (−1)k` η · ω.

Example B1.3. The tensor algebra [DE: Tensoralgebra] of
a vector space V is

⊗
∗

V :=
∞⊕

k=0

V⊗k.
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Here of course V⊗1 � V and V⊗0 � R. Note that the tensor
product is graded, but is neither commutative nor anticom-
mutative.

B2. Exterior algebra

We now want to focus on antisymmetric tensors, to de-
velop the so-called exterior algebra [DE: äußere Algebra]
or Grassmann algebra [DE: Graßmann-Algebra] of the
vector space V , which we again assume to be of finite di-
mension m.
Just as we constructed V ⊗V = V⊗2 as a quotient of a huge
vector space, adding relators corresponding to the rules for
bilinearity, we construct the exterior power V ∧ V = Λ2V
as a further quotient. In particular, letting S ⊂ V⊗V denote
span of the elements v ⊗ v for all v ∈ V , we set V ∧ V :=
(V ⊗V)/S . We write v∧w for the image of v⊗w under the
quotient map. Thus v ∧ v = 0 for any v. From

(v + w) ∧ (v + w) = 0

it then follows that v ∧ w = −w ∧ v. If {ei : 1 ≤ i ≤ m} is a
basis for V , then

{ei ∧ e j : 1 ≤ i < j ≤ m}

is a basis for V ∧ V .
Higher exterior powers of V can be constructed in the same
way, but formally, it is easiest to construct the whole exte-
rior algebra [DE: äußere Algebra] Λ∗V =

⊕
ΛkV at once,

as a quotient of the tensor algebra
⊗
∗

V , this time by the
two-sided ideal [DE: zweiseitiges Ideal] generated by the
same set {v ⊗ v} ⊂ V ⊗ V ⊂

⊗
∗

V . This means the span
not just of the v ⊗ v but also of their products (on the left
and right) by arbitrary other tensors. Elements of Λ∗V
are called multivectors [DE: Multivektoren] and elements
of ΛkV are more specifically k-vectors [DE: k-Vektoren].
Again we use ∧ to denote the product on the resulting (still
graded) quotient algebra. This product is called the wedge
product [DE: Keilprodukt, Dachprodukt oder Wedgepro-
dukt] or more formally the exterior product [DE: äußeres
Produkt]. We again get v ∧ w = −w ∧ v for v,w ∈ V .
More generally, for any v1, . . . , vk ∈ V and any permuta-
tion σ ∈ Σk of {1, . . . , k}, this implies

vσ1 ∧ · · · ∧ vσk = (sgnσ) v1 ∧ · · · ∧ vk.

Now consider the wedge product of a k-vector α with an
`-vector β. To get the anticommutative law

α ∧ β = (−1)k`β ∧ α,

we use bilinearity to reduce to the case where α and β are
simple multivectors

α = v1 ∧ · · · ∧ vk, β = w1 ∧ · · · ∧ w`.

The permutation σ needed to interchange α and β is then
the kth power of a (k + `)-cycle, with sign (−1)k(k+`+1) =

(−1)k`.

2024 November 19: End of Lecture 12

If {ei : 1 ≤ i ≤ m} is a basis for V , then

{ei1···ik := ei1 ∧ · · · ∧ eik : 1 ≤ i1 < · · · < ik ≤ m}

is a basis for ΛkV . It will later be important to note that if
V carries an inner product, we can define an inner product
on ΛkV as well: if {ei} is an orthonormal basis for V , we
declare {ei1···ik } to be an orthonormal basis for ΛkV .

We note that dim ΛkV =
(

m
k

)
; we have Λ0V = R but also

ΛmV � R, spanned by e12···m. For k > m there are no an-
tisymmetric tensors: ΛkV = 0. The exterior algebra has
dim Λ∗V =

∑m
k=0

(
m
k

)
= 2m. The determinant [DE: Deter-

minante] has a natural definition in terms of the exterior
algebra: if we have m vectors v j ∈ V given in terms of the
basis {ei} as v j =

∑
i vi

jei then

v1 ∧ · · · ∧ vm = det
(
vi

j
)
e12···m.

(The components of the wedge product of k vectors vi are
given by the various k×k minor determinants of the matrix(
vi

j
)
.)

The exterior powers of V with the natural k-linear maps
Vk → ΛkV are also characterized by the following univer-
sal property. Given any alternating k-linear map Vk → X to
any vector space X, it factors uniquely through ΛkV . That
is, alternating k-linear maps from Vk correspond to linear
maps from ΛkV . (One can also phrase the universality for
all k together in terms of homomorphisms of anticommu-
tative graded algebras.)
So far we have developed everything abstractly and alge-
braically. But there is a natural geometric picture of how
k-vectors in ΛkV correspond to k-planes (k-dimensional
linear subspaces) in V . More precisely, we should talk
about simple [DE: einfache] k-vectors here: those that can
be written in the form v1 ∧ · · · ∧ vk. We will see that, for
instance, e12 + e34 ∈ Λ2R

4 is not simple.
A nonzero vector v ∈ V lies in a unique oriented 1-plane
(line) in V; two vectors represent the same oriented line if
and only if they are positive multiples of each other. Now
suppose we have vectors v1, . . . , vk ∈ V . They are linearly
independent if and only if 0 , v1 ∧ · · · ∧ vk ∈ ΛkV . Two
linearly independent k-tuples (v1, . . . , vk) and (w1, . . . ,wk)
represent the same oriented k-plane if and only if the
wedge products v1 ∧ · · · ∧ vk and w1 ∧ · · · ∧wk are positive
multiples of each other, that is, if they lie in the same ray
in ΛkV . (Indeed, the multiple here is the ratio of k-areas
of the parallelepipeds spanned by the two k-tuples, given
as the determinant of the change-of-basis matrix for the k-
plane. When this determinant is negative, the two bases
are oppositely oriented; compare Definition B5.1 below.)
We let Gk(V) denote the set of oriented k-planes in V ,
called the (oriented) Grassmannian [DE: (orientierte)
Graßmann-Mannigfaltigkeit]. Then the set of simple k-
vectors in ΛkV can be viewed as the cone over Gk(V). (If
we pick a norm on ΛkV , say induced by an inner product
on V , then we can identify Gk(V) with the set of “unit”
simple k-vectors, say those arising from an orthonormal
basis for some k-plane.)
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(Often, especially in algebraic geometry, one prefers to
work with the unoriented Grassmannian Gk(V)/{±1}. It
is most naturally viewed as lying in the projective space

P
(
ΛkV

)
:=

(
ΛkV r {0}

) / (
R r {0}

)
.

In algebraic geometry one typically also replaces R by C
throughout.)
If we give V an inner product and an orientation, then any
oriented k-plane has a unique orthogonal compatibly ori-
ented (m−k)-plane. This induces an isomorphism between
GkV and Gm−kV . It extends to a linear, norm-preserving
isomorphism

? : ΛkV → Λm−kV

called the Hodge star operator. (Recall that both these
spaces have the same dimension

(
m
k

)
.) If v is a simple k-

vector, then ?v is a simple (m − k)-vector representing the
orthogonal complement. In particular, if {ei} is an oriented
orthonormal basis for V , then

?
(
e1 ∧ · · · ∧ ek

)
= ek+1 ∧ · · · ∧ em

and similarly each other vector in our standard basis for
ΛkV maps to a basis vector for Λm−kV , possibly with a
minus sign.
Classical vector calculus in three dimensions uses the
Hodge star implicitly: instead of talking about bivec-
tors and trivectors, we introduce the cross product [DE:
Kreuzprodukt] and triple product [DE: Spatprodukt]:

v × w := ?(v ∧ w) ∈ R3,

[u, v,w] := 〈u, v × w〉 = ?(u ∧ v ∧ w) ∈ R.

But even physicists noticed that such vectors and scalars
transform differently (say under reflection) than ordinary
vectors and scalars, and thus refer to them as pseudo-
vectors and pseudoscalars.
For dim V = m, we can use these terms as follows:

• scalars [DE: Skalare] are elements of R = Λ0V ,
• vectors [DE: Vektoren] are elements of V = Λ1V ,
• pseudovectors [DE: Pseudovektoren] are elements of
?V = Λm−1V � V , and
• pseudoscalars [DE: Pseudoskalare] are elements of
?R = ΛmV � R.

(The two isomorphisms at the end depend on a choice of
orientation for V .)
Of course, these are in a sense the easy cases. For these k,
any k-vector is simple. We can identify both G1V and
Gm−1V as the unit sphere in V = Λ1V � Λm−1V . For
2 ≤ k ≤ m − 2 on the other hand, not all k-vectors are
simple, and GkV has lower dimension than the unit sphere
in ΛkV . Indeed, it can be shown that the set of simple k-
vectors (the cone over GkV) is given as the solutions to a
certain set of quadratic equations called the Grassmann–
Plücker relations. For instance

∑
ai jei j ∈ Λ2R

4 is a simple
2-vector if and only if

a12a34 − a13a24 + a14a23 = 0.

This shows that G2R
4 is a smooth 4-submanifold in the

unit sphere S5 ⊂ Λ2R
4 � R6.

If we choose an inner product on V , then the set of ori-
ented orthonormal bases for V can be identified with the
special orthogonal group SO(m). Thinking about how ori-
ented orthonormal bases for a k-plane and its orthogonal
complement fit together, we see that we can identify the
Grassmannian as a quotient space

GkV = SO(m)/
(
SO(k) × SO(m − k)

)
.

In particular, the Grassmannian is a smooth manifold of
dimension

(
m
2

)
−

(
k
2

)
−

(
m−k

2

)
= k(m − k).

B3. Differential forms

Many textbooks omit discussion of multivectors and con-
sider only the dual spaces. (This is presumably because the
abstract definition of tensor powers and then exterior pow-
ers as quotient spaces seems difficult.) Recall that vector
subspaces and quotient spaces are dual operations, in the
sense that if Y ⊂ X is a subspace, then the dual (X/Y)∗

of the quotient can be naturally identified with a subspace
of X∗, namely with the annihilator [DE: Annullator] Yo

of Y , consisting of those linear functionals on X that vanish
on Y:

(X/Y)∗ � Yo ⊂ X∗.

Using this, we find that

ΛkV := (ΛkV)∗ ⊂
(
V⊗k)∗

can be identified with the subspace of those k-linear maps
Vk → R that are alternating [DE: alternierend].
While it is easy to construct the wedge product on multi-
vectors as the image of the tensor product under the quo-
tient map, the dual wedge product on Λ∗V requires con-
structing a map to the alternating subspace. For ω, η ∈
Λ1V = V∗ we set

ω ∧ η := ω ⊗ η − η ⊗ ω.

More generally, for ω ∈ ΛkV and η ∈ Λ`V we use an
alternating sum over all permutations σ ∈ Σk+`:

(ω ∧ η)(v1, . . . , vk+`) :=
1

k!`!

∑
σ

(sgnσ)ω(vσ1, . . . , vσk) η(vσ(k+1), . . . , vσ(k+`)).

The factor 1/(k!`!) is chosen so that if {ei} is a basis for V
and {ωi} is the dual basis for Λ1V = V∗ then{

ωi1···ik := ωi1 ∧ · · · ∧ ωik }
is the basis of ΛkV dual to the basis {ei1···ik } for ΛkV .
Putting these spaces together, we get an anticommutative
graded algebra

Λ∗V :=
m⊕

k=0

ΛkV.

23



J.M. Sullivan, TU Berlin B: Differential Forms Diff Geom II, WS 2024/25

Again the dimension of each summand is
(

m
k

)
so the whole

algebra has dimension 2m.
If L : V → W is a linear map, then for each k we get an
induced map L∗ : ΛkW → ΛkV defined naturally by

L∗ω(v1, . . . , vk) = ω(Lv1, . . . , Lvk).

Of course, we have introduced these ideas in order to apply
them to the tangent spaces TpM to a manifold Mm. We get
dual bundles ΛkT M and ΛkT M of rank

(
m
k

)
.

Definition B3.1. A (differential) k-form [DE: Differen-
tialform vom Grad k oder k-Form] on a manifold Mm

is a (smooth) section of the bundle ΛkT M. We write
Ωk M = Γ(ΛkT M) for the space of all k-forms, which
is a module over C∞M = Ω0M. Similarly we write
Ω∗M = Γ(Λ∗T M) =

⊕
Ωk M for the exterior algebra [DE:

äußere Algebra] on M.

If ω ∈ Ωk M is a k-form, then at each point p ∈ M the
value ωp ∈ ΛkTpM is an alternating k-linear form on TpM
or equivalently a linear functional on ΛkTpM. That is, for
any k vectors X1, . . . , Xk ∈ TpM we can evaluate

ωp(X1, . . . , Xk) = ωp(X1 ∧ · · · ∧ Xk) ∈ R.

In particular, ωp naturally takes values on (weighted) k-
planes in TpM; as we have mentioned and will explore in
detail later, k-forms are the natural objects to integrate over
k-dimensional submanifolds in M.
If f : Mm → Nn is a smooth map and ω ∈ ΩkN is a k-form,
then we can pull back ω to get a k-form f ∗ω on M defined
by

( f ∗ω)p(X1, . . . , Xk) = ω f (p)((Dp f )X1, . . . , (Dp f )Xk).

(Of course this vanishes if k > m.) As a special case, if
f : M → N is the embedding of a submanifold, then f ∗ω =

ω|M is the restriction [DE: Einschränkung] of ω to the sub-
manifold M, in the sense that we consider only the values
of ωp(X1, . . . , Xk) for p ∈ M ⊂ N and Xi ∈ TpM ⊂ TpN.
Exercise B3.2. Pullback commutes with wedge product in
the sense that

f ∗(ω ∧ η) = ( f ∗ω) ∧ ( f ∗η)

for f : M → N and ω, η ∈ Ω∗N.
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In a coordinate chart (U, ϕ) we have discussed the coordi-
nate bases {∂i} and {dxi} for TpM and T ∗pM, respectively,
the pushforward under ϕ−1 and pullback under ϕ of the
standard bases on Rm and its dual. Similarly,{

dxi1 ∧ · · · ∧ dxik : 1 ≤ i1 < · · · < ik ≤ m
}

forms the standard coordinate basis for each ΛkTpM; any
ω ∈ Ωk(M) (or more properly its restriction to U) can be
expressed uniquely as

ω|U =
∑

i1<···<ik

ωi1···ik dxi1 ∧ · · · ∧ dxik

for some smooth functions ωi1···ik ∈ C∞U. To simplify
notation, we often write this as ω|U =

∑
I ωIdxI in terms

of the multi-index [DE: Multiindex] I = (i1, . . . , ik).

B4. Exterior derivative

Zero-forms are of course just scalar fields, that is, smooth
functions. We have also already considered one-forms,
which are simply covector fields. In particular, given
f ∈ Ω0M = C∞(M), its differential d f ∈ Ω1M = Γ(T ∗M)
is a one-form with d f (X) = X f ∈ C∞(M) for any vector
field X. We now want to generalize this to define for any
k-form ω its exterior derivative [DE: äußere Ableitung], a
(k + 1)-form dω.

Definition B4.1. An antiderivation [DE: Antiderivation]
on the graded algebra (Ω∗M,∧) is a linear map D : Ω∗M →
Ω∗M satisfying the following version of the Leibniz prod-
uct rule for ω ∈ Ωk M and η ∈ Ω∗M:

D(ω ∧ η) = (Dω) ∧ η + (−1)kω ∧ (Dη).

To remember the sign here, it can help to think of D as
behaving like a one-form when it “moves past” ω.

Proposition B4.2. Any antiderivation on Ω∗M is a local
operator in the sense that if ω = η on an open set U then
Dω = Dη on U.

Proof. By linearity it suffices to consider the case when
η ≡ 0 and ω is a k-form for some k. Thus we know ω van-
ishes on U and must show Dω also vanishes on U. Given
any p ∈ U, we can find a function f ∈ C∞M supported
in U with f (p) = 1. Then fω ≡ 0 on M and it follows that

0 = D( fω) = (D f ) ∧ ω + f ∧ (Dω).

At p this gives 0 = D f ∧ 0 + 1(Dω)p = (Dω)p as desired.
�

Theorem B4.3. For any manifold Mm, the differential map
d : Ω0M → Ω1M has a unique R-linear extension to an
antiderivation d : Ω∗M → Ω∗M satisfying d2 = d ◦ d = 0.
This antiderivation has degree 1 in the sense that it sends
Ωk M to Ωk+1M; it is called the exterior derivative [DE:
äußere Ableitung].

Proof. First consider a k-form that can be expressed as
g d f 1 ∧ · · · ∧ d f k ∈ Ωk M for some functions g, f i ∈ C∞M.
The two conditions on d together automatically imply that

d
(
g d f 1 ∧ · · · ∧ d f k) = dg ∧ d f 1 ∧ · · · ∧ d f k ∈ Ωk+1M.

In a coordinate chart (U, ϕ) of course every k-form ω can
be expressed as a sum of terms of this form. The propo-
sition above shows we can work locally in such a chart.
Thus we know the exterior derivative (if it exists) must be
given in coordinates by

d
(∑

I

ωIdxI) =
∑

I

dωI ∧ dxI =
∑

I

∑
i

∂iωI dxi ∧ dxI

=
∑

I

∑
i

∂iωI dxi ∧ dxi1 ∧ · · · ∧ dxik .

(Note that terms here where i = i j will vanish; for the other
terms, reordering the factors in this last wedge product –
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to put i in increasing order with the i js and thus obtain a
standard basis element – will introduce signs.)
Now a straightforward calculation shows that the operator
d defined by this formula really is an antiderivation locally:

d
(
(a dxI) ∧ (b dxJ)

)
= d(ab) ∧ dxI ∧ dxJ =

(
(da)b + a(db)

)
∧ dxI ∧ dxJ

= (da ∧ dxI) ∧ (b dxJ) + (−1)k(a dxI) ∧ (db ∧ dxJ),

where I = (i1, . . . , ik) is a k-index. Clearly this antideriva-
tion has degree 1 as claimed. The fact that d2 = 0 lo-
cally follows directly from the symmetry of mixed partial
derivatives.
Now since d is determined uniquely, if we have overlap-
ping charts (U, ϕ) and (V, ψ), then on U ∩ V we must get
the same result evaluating d in either chart. Finally, since
the exterior algebra operations + and ∧ are defined point-
wise, to check that d is an antiderivation and d2 = 0 it
suffices that we know these hold locally. �

Proposition B4.4. The pullback of forms under a map
f : Mm → Nn commutes with the exterior derivative. That
is, for ω ∈ Ω∗N we have d( f ∗ω) = f ∗(dω).

Proof. It suffices to work locally around a point p ∈ M.
Let (V, ψ) be coordinates around f (p). By linearity we can
assume ω = a dyi1 ∧ · · · ∧ dyik in these coordinates. For
k = 0 we have ω = a ∈ C∞V . For any Xp ∈ TpM we have

( f ∗da)(Xp) = (da)( f∗Xp) = ( f∗Xp)a
= Xp( f ∗a) = (d f ∗a)(Xp).

Note that if ( f 1, . . . , f n) = ψ ◦ f is the coordinate expres-
sion of f (on some neighborhood of p) then the formula
above gives f ∗(dyi) = d f i. Since pullback commutes with
wedge products, for k > 0 we then have

f ∗ω = ( f ∗a) d f i1 ∧ · · · ∧ d f ik

and so

d( f ∗ω) = d( f ∗a) ∧ d f i1 ∧ · · · ∧ d f ik

= f ∗(da) ∧ d f i1 ∧ · · · ∧ d f ik

= f ∗
(
da ∧ dyi1 ∧ · · · ∧ dyik ) = f ∗(dω). �

Definition B4.5. The contraction [DE: Kontraktion] of a
form with a vector field (also known as interior multipli-
cation [DE: innere Ableitung]) has a seemingly trivial def-
inition: if ω ∈ Ωk M and X ∈ X(M) then ιXω ∈ Ωk−1 is
given by

ιXω(X2, . . . , Xk) := ω(X, X2, . . . , Xk).

First note that this is a purely pointwise operation, so we
could define it on ΛkV for a single vector space – even
proving the next proposition at that level – but we won’t
bother. (It is the adjoint of the operator on Λ∗V given by
left multiplication by X.)
Next note that for a 1-form, ιX(ω) = ω(X) ∈ Ω0M. For a
0-form f ∈ Ω0M = C∞M we set ιX f = 0.

Proposition B4.6. For any X, the operation ιX is an an-
tiderivation on Ω∗M of degree −1 whose square is zero.

Proof. It is clear that ιX ◦ ιX = 0 since

ιXιXω(. . .) = ω(X, X, . . .) = 0.

The antiderivation property is

ιX(ω ∧ η) = (ιXω) ∧ η + (−1)kω ∧ (ιXη)

for ω ∈ Ωk M; we leave the proof as an exercise. �

We will later discuss Cartan’s “magic formula”, relating
this contraction to exterior and Lie derivatives.
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B5. Orientations and volume forms

Definition B5.1. An orientation [DE: Orientierung] on an
m-dimensional vector space V is a choice of one of the two
connected components of ΛmV r {0} � R r {0}, that is a
choice of a nonzero m-form in ω ∈ ΛmV (up to positive
real multiples). If V is oriented by ω, then an ordered basis
{e1, . . . , em} for V is said to be positively oriented [DE: pos-
itiv orientiert] if ω(e1, . . . , em) > 0. Often an orientation
on V is defined through such a basis (to avoid the machin-
ery of the exterior algebra).

Definition B5.2. A volume form [DE: Volumenform] on a
manifold Mm is a nowhere vanishing m-form ω ∈ ΩmM.
We say M is orientable [DE: orientierbar] if it admits a
volume form. An orientation [DE: Orientierung] of M is a
choice of volume form, up to pointwise multiplication by
positive smooth functions λ > 0 ∈ C∞M. This is the same
as a continuous choice of orientations of the tangent spaces
TpM.

The name “volume form” comes from the fact that we can
integrate a volume form to measure volumes in M, as de-
scribed later.
A connected orientable manifold has exactly two orien-
tations. The Möbius strip, the real projective plane RP2

and the Klein bottle are examples of nonorientable 2-
manifolds.
The standard orientation on Rm is given by dx1∧· · ·∧dxm,
so that {e1, . . . , em} is an oriented basis for each TpR

m.
An equivalent definition of orientation (analogous to that
of smooth structures) is through a coherently oriented at-
las for M. Here two charts (U, ϕ) and (V, ψ) are co-
herently oriented if the transition function ϕ ◦ ψ−1 is an
orientation-preserving diffeomorphism of Rm. (Here of
course orientation-preserving means that the Jacobian de-
terminant is everywhere positive.)
Suppose now Mm is an oriented Riemannian manifold. At
any p ∈ M there is a unique Ωp ∈ ΛmTpM such that
Ωp(e1, . . . , em) = +1 for any oriented orthonormal basis
{e1, . . . , em} for TpM. These fit together to give the Rie-
mannian volume form [DE: Riemann’sche Volumenform]
Ω ∈ ΩmM.
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Note that the Hodge star we defined for multivectors
? : ΛkTpM → Λm−kTpM can equally well be defined for
forms ? : ΛkTpM → Λm−kTpM. On an oriented Rie-
mannian manifold, we thus get a Hodge star operator
? : Ωk M → Ωm−k M. This is the setting where Hodge star
arises most frequently. In particular, we can write the Rie-
mannian volume form as Ω = ?1.
Given an oriented coordinate chart (U, ϕ) then at any p ∈
U we have the coordinate basis {∂i} for TpM but can also
choose an oriented orthonormal basis {ek}. Then of course
for some matrix A =

(
ak

i
)

we have ∂i =
∑

k ak
i ek. Since

〈ek, e`〉 = δk`, we get

gi j =
〈
∂i, ∂ j

〉
=

〈∑
ak

i ek,
∑

a`je`
〉

=
∑

k

ak
i ak

j.

As a matrix equation, we can write
(
gi j

)
= AT A, which

implies det(gi j) = (det A)2. Since both bases are positively
oriented, we know det A > 0, so det A = +

√
det g. (Note

that while abbreviating det(gi j) as det g is common, it un-
fortunately hides the fact that this is an expression in par-
ticular coordinates.)
Now we compute

Ωp(∂1, . . . , ∂m) = (det A) Ωp(e1, . . . , em) = det A =
√

det g.

Equivalently, we have the coordinate expression

Ω =
√

det g dx1 ∧ · · · ∧ dxm.

On an oriented Riemannian manifold (Mm, g), any m-form
ω is a multiple ω = f Ω = ? f of the volume form Ω, with
f ∈ C∞M.

B6. Integration

We will base our integration theory on the Riemann inte-
gral. Recall that given an arbitrary real-valued function f
on a box B = [a1, b1] × · · · × [am, bm] ⊂ Rm we define
upper and lower Riemann sums over arbitrary partitions
into small boxes – the function f is Riemann integrable
[DE: Riemann-integrierbar] if these have the same limiting
value, which we call∫

B
f dx1 · · · dxm.

Recall also that A ⊂ Rm has (Lebesgue) measure zero if
for each ε > 0 there is a covering of A by countably many
boxes of total volume less than ε. The image of a set of
measure zero under a diffeomorphism (or indeed under any
locally Lipschitz map) again has measure zero. Thus we
can also speak of subsets of measure zero in a manifold M.
Given a function f : D → R with D ⊂ Rm, we define its
extension by zero f̄ : Rm → R by setting f̄ = f on D
and f̄ = 0 elsewhere. Lebesgue proved the following: A
bounded function f : D→ R defined on a bounded domain
D ⊂ Rm is Riemann integrable if and only if f̄ is contin-
uous almost everywhere [DE: fast überall stetig], meaning
that its set of discontinuities has measure zero.

For instance, the characteristic function χD is Riemann in-
tegrable if D is bounded and its topological boundary ∂D
has measure zero. Then we call D a domain of integration.
Because any continuous function f on a compact set is
bounded, we find: If U ⊂ Rm is open and f : U → R is
continuous with compact support in U, then f is Riemann
integrable.
We write Ωk

c M ⊂ Ωk M for the subspace of k-forms with
compact support. (If M is compact, then of course Ωk

c =

Ωk.)

Definition B6.1. If ω ∈ Ωm
c U is an m-form with compact

support in U ⊂ Rm then of course we can write uniquely
ω = f dx1 ∧ · · · ∧ dxm. We define∫

U
ω =

∫
U

f dx1 ∧ · · · ∧ dxm :=
∫

U
f dx1 · · · dxm.

Note that we use the standard basis element for ΛmRm here.
Otherwise we might pick up a minus sign, for instance∫

f dx2 ∧ dx1 = −
∫

f dx2 dx1 = −
∫

f dx1 dx2.

Lemma B6.2. If ϕ : U → V is a diffeomorphism of con-
nected open sets in Rm and ω an m-form with compact
support in V, then ∫

U
ϕ∗ω = ±

∫
V
ω,

where the sign depends on whether ϕ is orientation-
preserving or not.

Proof. Use xi for the standard coordinates on U and y j for
those on V . Then ω = f dy1 ∧ · · · ∧ dym for some func-
tion f . Writing ϕi = yi ◦ ϕ, the Jacobian matrix of ϕ is
J := (∂ϕi/∂x j). We have dϕi = ϕ∗dyi and so

dϕ1 ∧ · · · ∧ dϕm = det J dx1 ∧ · · · ∧ dxm.

Thus ∫
U
ϕ∗ω =

∫
U

( f ◦ ϕ) dϕ1 ∧ · · · ∧ dϕm

=

∫
U

( f ◦ ϕ) det J dx1 ∧ · · · ∧ dxm.

On the other hand, the standard change-of-variabes for-
mula for integrals on Rm says∫

V
ω =

∫
V

f dy1 · · · dym =

∫
U

( f ◦ ϕ) | det J| dx1 · · · dxm.

Since U is connected, det J has a constant sign, depending
on whether ϕ is orientation-preserving or not. �

Now suppose Mm is an oriented manifold, and ω ∈ Ωm
c M

is a compactly supported m-form. Then we will define∫
M ω ∈ R.

First consider a single oriented chart (U, ϕ) and assumeω ∈
Ωm

c U. Then we define∫
U
ω :=

∫
ϕ(U)

(
ϕ−1)∗ω.
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We claim this is independent of ϕ: if (U, ψ) is another ori-
ented chart, then using the diffeomorphism ϕ ◦ ψ−1 in the
lemma we find that∫

ϕ(U)

(
ϕ−1)∗ω =

∫
ψ(U)

(
ϕ ◦ ψ−1)∗(ϕ−1)∗ω =

∫
ψ(U)

(
ψ−1)∗ω.

In general, we choose a partition of unity { fα} subordinate
to an oriented atlas

{
(Uα, ϕα)

}
. For any ω ∈ Ωm

c M, note
that ω =

∑
α fαω is a finite sum, in the sense that for all but

finitely many α we have fαω ≡ 0: Because the partition of
unity is locally finite, each p ∈ suppω has a neighborhood
Np meeting only finitely many supp fα; because suppω is
compact, it is covered by finitely many of the Np. Note
also that each summand fαω has compact support in the
respective Uα. We define∫

M
ω :=

∑
α

∫
Uα

fαω.

We just need to check this is independent of the choice of
atlas and partition of unity.
So suppose {gβ} is a partition of unity subordinate to an-
other oriented atlas

{
(Vβ, ψβ)

}
. Then we have∑

α

∫
Uα

fαω =
∑
α

∫
Uα

fα
∑
β

gβω

=
∑
α

∑
β

∫
Uα

fαgβω =
∑
α

∑
β

∫
Uα∩Vβ

fαgβω.

(Because these are finite sums, they can be rearranged at
will and exchanged with the integrals.) By symmetry, we
see that the last expression also equals

∑
β

∫
Vβ

gβω, as de-
sired.
Note: If −M denotes the same manifold M with the oppo-
site orientation, then we have

∫
−M ω = −

∫
M ω

2024 December 2: End of Lecture 15

Note: for m = 0, an oriented 0-manifold is a countable
collection of points with signs ±1: we write M =

∑
pi −∑

q j. (Here we cannot use charts to test orientation.) A
zero-form is a function f : M → R and if it has compact
support it vanishes outside a finite set of pi and q j. We
define the integral to be

∫
M f =

∑
i f (pi) −

∑
j f (q j).

We have developed this theory for smooth forms, partly
just because we have no notation for possibly discontinu-
ous sections of ΛmT M. Note, however, that as long as ω
is bounded, vanishes outside some compact set and is con-
tinuous almost everywhere, we can repeat the calculations
above with no changes to define

∫
M ω.

On an oriented Riemannian manifold M (or any manifold
with a specified volume form Ω), we define the volume
integral of a function f ∈ C∞c M with compact support as∫

M
f d vol :=

∫
M

f Ω =

∫
M
? f .

Note that if we keep the Riemannian metric but switch
orientation, the volume form on −M is −Ω, so the vol-
ume integral is independent of orientation:

∫
−M f d vol =∫

M f d vol.

For a domain D ⊂ M (compact with boundary of measure
zero) we define its volume to be

vol D :=
∫

D
1 d vol =

∫
D

Ω :=
∫

M
χDΩ ≥ 0.

The volume of the manifold is vol(M) :=
∫

M 1 d vol =∫
M Ω. This works directly if M is compact; for a non-

compact manifold we can take a limit over an appropriate
compact exhaustion and reach either a finite value or +∞.

B7. Oriented manifolds with boundary

Suppose Mm is a manifold with boundary; its boundary
∂M is an (m − 1)-manifold. At p ∈ ∂M ⊂ M we see
that Tp∂M ⊂ TpM is a hyperplane, cutting TpM into two
parts, consisting of the inward- and outward-pointing vec-
tors at p. (These are tangent vectors at p to curves starting
and ending at p, respectively.)
An orientation on M induces an orientation on ∂M as fol-
lows. Suppose (v, v1, . . . , vm−1) is an oriented basis for
TpM, where v is outward-pointing and vi ∈ Tp∂M. Then
(v1, . . . , vm−1) is by definition an oriented basis for Tp∂M.
(There are four obvious possible conventions here – either
an inward- or an outward-pointing vector could be put ei-
ther before or after the basis for Tp∂M. We have picked
the convention that works best for Stokes’ Theorem.)
Equivalently, suppose the orientation of M is given by a
volume form Ω, and we pick a vector field X ∈ X(M)
which is outward-pointing along ∂M. Then the contraction
ιX(Ω) restricted to ∂M is a volume form on the boundary
which defines its orientation.

B8. Stokes’ Theorem

Suppose Mm is an oriented manifold with boundary and ω
is an (m − 1)-form with compact support on M. Stokes’
Theorem then says

∫
M dω =

∫
∂M ω. We see d2 = 0 is dual

to the condition that ∂(∂M) = ∅:

0 =

∫
M

d2η =

∫
∂M

dη =

∫
∂∂M

η = 0.

Stokes’ Theorem is quite fundamental, and can be used
for instance to define dω for nonsmooth forms, or ∂M for
generalized surfaces M.

Remark B8.1. Of course in
∫
∂M ω, the integrand is really

the restriction or pullback ω|∂M = i∗ω of ω to ∂M. This is
now a top-dimensional form on the (m − 1)-manifold ∂M.

When the boundary of M is empty (∂M = ∅, so that M is
an ordinary manifold, without boundary) of course Stokes’
Theorem reduces to

∫
M dω = 0.

It turns out that on a connected orientable closed manifold
Mm, an m-form η can be written as dω for some ω if and
only if

∫
M η vanishes; we will return to such questions after

proving the theorem.
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Stokes himself would probably not recognize this gener-
alized version of his theorem. The modern formulation in
terms of differential forms is due mainly to Élie Cartan.
The classical cases are those in low dimensions. For M an
interval (m = 1), we just have the fundamental theorem
of calculus; for a domain in R2, we have Green’s theorem;
for a domain in R3, we have Gauss’s divergence theorem;
and for a surface with boundary in R3 we have the theorem
attributed to Stokes.
These special cases are of course normally formulated not
with differential forms and the exterior derivative, but with
gradients of functions, and divergence and curl of vector
fields. More precisely, on any Riemannian manifold, we
use the inner product to identify TpM and T ∗pM and thus
vector fields with one-forms. The gradient∇ f of a function
f ∈ C∞M is the vector field corresponding in this way to
d f . In particular, for any vector field X, we have

g(∇ f , X) = 〈∇ f , X〉 = d f (X) = X f .

On R3 we further use the Hodge star to identify vectors
with pseudovectors and thus one-forms with two-forms,
and to identify scalars with pseudoscalars and thus zero-
forms with three-forms. Then div, grad and curl are all
just the exterior derivative. Explicitly, we identify both the
one-form p dx + q dy + r dz and the two-form p dy ∧ dz +

q dz ∧ dx + r dx ∧ dy with the vector field p∂x + q∂y + r∂z,
and the three-form f dx∧dy∧dz with the function f . Then
d : Ω0 → Ω1 is the gradient as above, d : Ω1 → Ω2 is the
curl, and d : Ω2 → Ω3 is the divergence.
Our version of Stokes’ theorem is (as mentioned above)
certainly not the most general. For instance, we could eas-
ily allow “manifolds with corners”, like compact domains
with piecewise smooth boundaries. (It should be clear that
the divergence theorem in R3 is valid for a cube as well as
a sphere.)

Theorem B8.2 (Stokes). Suppose Mm is an oriented man-
ifold with boundary and ω is an (m − 1)-form on M with
compact support. Then∫

M
dω =

∫
∂M
ω.

Proof. Both sides are linear and integrals are defined via
partitions of unity. In particular, since

dω =
∑

d( fαω) =
(
d
∑

fα
)
ω +

∑
fα dω =

∑
fα dω,

we see that it suffices to consider the case when ω is
compactly supported inside one oriented coordinate chart
(U, ϕ). We may also assume that ϕ(U) = Rm or ϕ(U) =

Hm, depending on whether U is disjoint from ∂M or not.
Since the statement of the theorem is invariant under pull-
back by a diffeomorphism, we have shown it suffices to
consider the cases (a) M = Rm and (b) M = Hm.
After scaling, we can assume that ω is compactly sup-
ported within the cube (a) Q := (−1, 0)m or (b) Q :=
(−1, 0] × (−1, 0)m−1. In either case, we write

ω =

m∑
j=1

(−1) j−1ω j dx1 ∧ · · · ∧ d̂x j ∧ · · · ∧ dxm

with suppω j ⊂ Q, so that

dω =
∑ ∂ω j

∂x j dx1 ∧ · · · ∧ dxm,

meaning that∫
M

dω =
∑∫

Q

∂ω j

∂x j dx1 · · · dxm.

Now for each j we have by Fubini’s theorem that∫
Q

∂ω j

∂x j dx1 · · · dxm

=

∫ 0

−1
· · ·

∫ 0

−1

(∫ 0

−1

∂ω j

∂x j dx j
)

dx1 · · · d̂x j · · · dxm.

By the fundamental theorem of calculus, the inner inte-
gral in parentheses equals ω j(. . . , 0, . . .) − ω j(. . . ,−1, . . .).
Since ω has compact support in Q, this vanishes for j > 1.
In case (a) it vanishes even for j = 1, completing the proof
that

∫
M dω = 0.

In case (b) we have obtained∫
Hm

dω =

∫ 0

−1
· · ·

∫ 0

−1
ω1(0, x2, . . . , xm) dx2 · · · dxm.

Now consider the restriction of ω to ∂Hm, the pullback
under the inclusion map i. Since i∗dx1 = 0 we immediately
get

i∗ω = ω1 dx2 ∧ · · · ∧ dxm.

Comparing this to the formula for
∫

M dω shows we are
done. �

B9. De Rham cohomology

Definition B9.1. We say a k-form ω on Mm is closed [DE:
geschlossen] if dω = 0; we say ω is exact [DE: exakt] if
there is a (k−1)-form η such that dη = ω. For clarity, write
dk := d|Ωk : Ωk → Ωk+1. We write Bk(M) for the space of
exact forms and Zk(M) for the space of closed forms. That
is, Zk = ker dk and Bk = Im dk−1.

Since by definition d2 = 0, in particular dk ◦ dk−1 = 0,
it is clear that exact forms are closed. (Algebraically, we
have Bk ⊂ Zk ⊂ Ωk.) An interesting question is to what
extent the converse fails to be true. The answer is measured
by the de Rham cohomology [DE: De-Rham-Kohomologie]
Hk(M) := Zk/Bk, the quotient vector space (over R). A
typical element is the equivalence class [ω] = {ω + dη} of
a closed k-form ω.

2024 December 3: End of Lecture 16

If we consider all degrees k together, we set

Z := Z0 ⊕ · · · ⊕Zm = ker d, B := B0 ⊕ · · · ⊕Bm = Im d.

Defining

H := Z/B = H0 ⊕ · · · ⊕ Hm
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we find this cohomology ring [DE: Kohomologiering] is not
just a vector space but indeed an algebra under the wedge
product. To check the details, start by noting that if ω′ is
closed, then

(ω + dη) ∧ ω′ = ω ∧ ω′ + d(η ∧ ω′).

An important theorem in the topology of manifolds says
that this cohomology agrees with other standard defini-
tions, in particular that it is dual to singular homology.
(This is defined via cycles of simplices modulo boundaries,
and can be thought of as counting loops or handles in di-
mension k.) The key here is Stokes’ Theorem: a closed
form integrates to zero over any boundary, so closed forms
can be integrated over homology classes. Furthermore an
exact form integrates to zero over any cycle, so this integral
only depends on the cohomology class.

Theorem B9.2. If Mm is an orientable closed manifold
with n components, then H0(M) � Rn.

Proof. Note that B0 = 0 so H0 = Z0, which is the space
of functions with vanishing differential. But these are just
the locally constant functions, so it is clear this space is
n-dimensional. �

For orientable closed manifolds Mm, Poincaré duality (re-
lated to the Hodge star operation) gives a connection be-
tween co/homology in complementary dimensions. As
an example, if such a manifold has n components, then
Hm(M) � Rn. We prove the dimension is at least this big.

Theorem B9.3. If Mm is a orientable closed manifold with
n components, then Hm(M) has dimension at least n.

Proof. Denote the components by Mi. By Stokes, inte-
gration ω 7→

∫
Mi
ω over each component gives a map

Ωm = Zm → R vanishing on Bm, and thus a map Hm → R;
together these give a map to Rn. Choosing a Riemannian
metric on Mi, its volume form has positive integral; these
n forms show that our map Hm → Rn is surjective. �

B10. Lie derivatives

Earlier we defined the Lie derivative of a vector field Y
with respect to a vector field X. This is a derivative along
the integral curves of X, where we use (pushforwards un-
der) the flow ϕt of X to move vectors of Y between different
points along these curves.
The Lie derivative of a differential k-form ω is defined in
the same way, except that the pushforward under ϕ−t is
replaced by a pullback under ϕt. That is, we define:

(
LXω

)
p :=

d
dt

∣∣∣∣∣
t=0
ϕ∗tωϕt(p) =

d
dt

∣∣∣∣∣
t=0

(ϕ∗tω)p ∈ ΛkTpM.

Note that this is again a k-form. In the particular case of
k = 0 where ω = f ∈ C∞M we can ignore the pullback –
LX f is simply the derivative of f along the integral curve,
that is, LX f = X f = d

dt

∣∣∣
t=0 f

(
ϕt(p)

)
.

Proposition B10.1. The Lie derivative LX on forms satis-
fies the following properties:

(1) it is a derivation on Ω∗M, that is, an R-linear map
satisfying

LX(ω ∧ η) = (LXω) ∧ η + ω ∧ (LXη);

(2) it commutes with the exterior derivative, that is,

LX(dω) = d(LXω);

(3) it satisfies the “product” formula – for a k-form ω ap-
plied to k vector fields Yi ∈ X(M) we have

LX
(
ω(Y1, . . . ,Yk)

)
= (LXω)(Y1, . . . ,Yk) +

k∑
i=1

ω
(
Y1, . . . , LXYi, . . . ,Yk

)
.

Proof. (1) follows directly from the fact that pullback
commutes with wedge product and from the product
rule for d/dt:(

LX(ω ∧ η)
)

p =
d
dt

∣∣∣∣∣
t=0

(
ϕ∗t (ω ∧ η)

)
p

=
d
dt

∣∣∣∣∣
t=0

(
(ϕ∗tω)p ∧ (ϕ∗t η)p

)
=

(
d
dt

∣∣∣∣∣
t=0

(ϕ∗tω)p

)
∧ ηp + ωp ∧

(
d
dt

∣∣∣∣∣
t=0

(ϕ∗t η)p

)
= (Lxω)p ∧ ηp + ωp ∧ (LXη)p.

(2) follows from the fact that d commutes with pullback
and with d/dt:

LXdω =
d
dt

∣∣∣∣∣
t=0
ϕ∗t dω =

d
dt

∣∣∣∣∣
t=0

dϕ∗tω

= d
( d

dt

∣∣∣∣∣
t=0
ϕ∗tω

)
= dLXω.

(3) follows (as for the product rule for d/dt) from a clever
splitting of one difference quotient into two or more.
We will write out the proof only for k = 1, considering
ω(Y). We find

LX
(
ω(Y)

)
p = lim

t→0
1
t

(
ωϕt p

(
Yϕt p

)
− ωp(Yp)

)
= lim

t→0
1
t

(
ωϕt p

(
Yϕt p

)
− ωp

(
ϕ−t∗Yϕt p

))
+ lim

t→0
1
t

(
ωp

(
ϕ−t∗Yϕt p

)
− ωp(Yp)

)
.

Here the second limit clearly gives

ωp

( d
dt

∣∣∣∣∣
t=0
ϕ−t∗Yϕt p

)
= ωp

(
LXY

)
.

For the first limit, we can rewrite the first term as(
ϕ∗tωϕt p

)(
ϕ−t∗Yϕt p

)
, so that both terms are applied to the

same vector. The limit becomes

lim
t→0

ϕ∗t (ωϕt p) − ωp

t
(
ϕ−t∗Yϕt p

)
,

where the form clearly limits to (LXω)p and the vector
to Yp. �
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Since the Lie derivatives of functions and vector fields are
known, we can rewrite the product formula as a formula
for LXω as follows:

(LXω)(Y1, . . . ,Yk)

= X
(
ω(Y1, . . . ,Yk)

)
−

k∑
i=1

ω
(
Y1, . . . , [X,Yi], . . . ,Yk

)
.

Now we are ready to prove Cartan’s magic formula [DE:
Cartan-Formel]:

Proposition B10.2. For any vector field X we have

LX = dιX + ιXd.

Proof. We know that LX is a derivation commuting with d.
Since d2 = 0, it is easy to check the right-hand side also
commutes with d. Furthermore it is a derivation: for ω ∈
Ωk M we get

dιX(ω ∧ η) + ιXd(ω ∧ η)

= d((ιXω) ∧ η) + (−1)kd(ω ∧ ιXη)

+ ιX((dω) ∧ η) + (−1)kιX(ω ∧ dη)

= (dιXω) ∧ η + (−1)k−1(ιXω) ∧ (dη)

+ (−1)k(dω) ∧ (ιXη) + (−1)2kω ∧ (dιXη)

+ (ιXdω) ∧ η + (−1)k+1(dω) ∧ (ιXη)

+ (−1)k(ιXω) ∧ (dη) + (−1)2kω ∧ (ιXdη)
= (dιXω) ∧ η + (ιXdω) ∧ η + ω ∧ (dιXη) + ω ∧ (ιXdη).

Thus if the formula holds for ω and η, it also holds for
ω∧ η and for dω. By linearity and locality, this means it is
enough to check it for 0-forms:

(dιX + ιXd) f = ιXd f = (d f )(X) = X f = LX f . �

Proposition B10.3. Suppose X and Y are vector fields on
Mm and ω is a 1-form. Then

dω(X,Y) = Xω(Y) − Yω(X) − ω([X,Y]).

Proof. We use Cartan’s magic formula and the product rule
for LXω:

dω(X,Y) = (ιXdω)(Y)
= (LXω)(Y) − (dιXω)(Y)
= X

(
ω(Y)

)
− ω

(
[X,Y]

)
− d

(
ω(X)

)
(Y)

= X
(
ω(Y)

)
− ω

(
[X,Y]

)
− Y

(
ω(X)

)
. �

Note that by linearity and locality it suffices to con-
sider ω = f dg. So an alternate proof simply computes
each term for this case, getting for instance Xω(Y) =

X( f dg(Y)) = X( f Yg) = (X f )(Yg) + f XYg.

Theorem B10.4. Suppose ω ∈ Ωk(Mm) is a k-form and
X0, . . . , Xk ∈ X(M) are k + 1 vector fields. Then

(dω)(X0, . . . , Xk)

=
∑

0≤i≤k

(−1)iXi
(
ω(X0, . . . , X̂i, . . . , Xk)

)
+

∑
0≤i< j≤k

(−1)i+ jω
(
[Xi, X j], X0, . . . , X̂i, . . . , X̂ j, . . . , Xk

)
.

Note that the case k = 0 is simply d f (X) = X f , and the
case k = 1 is the last proposition. The general proof by
induction on k is left as an exercise; the hint is to use Car-
tan’s magic formula as in the proof of the proposition to
write

(dω)(X0, . . . , Xk)
= (LX0ω)(X1, . . . , Xk) − (dιX0ω)(X1, . . . , Xk).

2024 December 9: End of Lecture 17
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C. RIEMANNIAN GEOMETRY

To take derivatives of a vector field along a curve requires
comparing tangent spaces at different points. The Lie
derivative uses diffeomorphisms to do this, which is not
entirely satisfactory since we need not just a curve but a
whole vector field.
Another approach is through connections or covariant
derivatives. In particular, there is a natural connection on
any Riemannian manifold, which is the starting point for
studying its geometry.

C1. Submanifolds in Euclidean space

Consider Euclidean space Rn with the standard inner prod-
uct on every TpR

n, and suppose Mm ⊂ Rn is a submanifold
(with the induced or pullback Riemannian metric). A map
X : M → TRn, p 7→ Xp ∈ TpR

n is called an Rn-valued
vector field along M. Of course TpR

n � Rn, so we can
identify X with a function X̃ : M → Rn.
But TpR

n also has an orthogonal decomposition (with re-
spect to the standard Euclidean inner product) into spaces
tangent and normal to M:

TpR
n = TpM ⊕ NpM.

We let π‖ and π⊥ denote the orthogonal projections onto
these subspaces, so that Xp = π‖Xp + π⊥Xp.
Now if γ : [a, b] → M is a curve (embedded) in M, then
we have the function X̃ ◦ γ : [a, b] → Rn and can take its
derivative. We can view this derivative as an Rn-valued
function on the 1-submanifold γ ⊂ M ⊂ Rn instead of on
[a, b] (technically we compose with γ−1). Again such a
map to Rn can be identified with an Rn-valued vector field
along γ (viewing its value at each point p as lying in TpR

n).
We call this vector field the derivative dX/dt of X along γ.
Both the original field X and its derivative dX/dt can be
decomposed (via π‖ and π⊥) into parts tangent and normal
to M. These decompositions are not in any definite rela-
tion to each other. Consider for instance vector fields along
a surface in R3 as we studied last semester. The deriva-
tives of the unit normal vector field are tangent vectors; the
derivatives of tangent vector fields will usually have both
tangent and normal components.

Definition C1.1. Suppose X is a smooth vector field on
Mm ⊂ Rn and γ is a curve in M. Then the vector field

DX
dt

:= π‖
(dX

dt

)
along γ, which is tangent to M, is called the covariant
derivative [DE: kovariante Ableitung] of X along γ.

Note that we only need X to be defined along γ. Note also
that we could apply this definition to any Rn-valued field
X, but there is little reason to do so – our goal is to focus
on the intrinsic geometry of M. Indeed, we will see that
this covariant derivative can be defined in a way depending
only on the Riemannian metric on M and independent of
the particular embedding M ⊂ Rn.

Example C1.2. Consider the round sphere S2 ⊂ R3 and
let γ(t) := (cos t, sin t, 0) be the equator parametrized by
arclength. Consider the vector field X along γ given by the
tangent vector

Xγ(t) := γ′(t) = (− sin t, cos t, 0).

Since dX/dt = γ′′(t) = −γ(t) is normal to S2, we find
DX/dt ≡ 0.
In general, a parametrized curve γ on M is called a
geodesic [DE: Geodäte] if its velocity vector field X = γ̇
satisfies DX/dt ≡ 0. On the sphere, the geodesics are ex-
actly the great circles parametrized at constant speed.

Now we want to work out coordinate expressions for the
covariant derivative. So let (U, ϕ) be a coordinate chart
for Mm ⊂ Rn and write V := ϕ(U) ⊂ Rm. Write {ui :
i = 1, . . . ,m} for the coordinates on Rm. Because M is
embedded in Rn, we can also write the inverse map

ϕ−1 =: ψ = (ψ1, . . . , ψn) : V → U ⊂ M ⊂ Rn

explicitly in coordinates. (Here we use {xα : α = 1, . . . , n}
for the coordinates on Rn and have ψα = xα ◦ ψ.) The
standard coordinate frame for TU is of course given by

∂i = ψ∗

(
∂

∂ui

)
=

∑
α

∂ψα

∂ui

∂

∂xα
,

where the ∂/∂xα are the standard basis vectors in Rn.
A curve γ in M will be given in coordinates as

γ(t) = ψ
(
u1(t), . . . , um(t)

)
for some real-valued functions ui(t).
A vector field Y (tangent to M) along γ can be expressed
in the coordinate basis as

Yγ(t) = Y(t) =
∑

i

bi(t)∂i

for some real-valued functions bi(t). Its derivative and co-
variant derivative along γ are then

dY
dt

=
∑

i

dbi

dt
∂i + bi d∂i

dt
,

DY
dt

=
∑

i

dbi

dt
∂i + bi D∂i

dt
.

To compute the covariant derivatives D∂i/dt of the coordi-
nate basis vectors, we recall that a time derivative along γ
is the same as a directional derivative in the direction of
the speed γ̇ =

∑ du j

dt ∂ j. Thus we get

D∂i

dt
= π‖

( d
dt

∑
α

∂ψα

∂ui

∂

∂xα

)
=

∑
α

∑
j

du j

dt
∂2ψα

∂u j ∂ui π
‖

(
∂

∂xα

)
.

Again, the ∂/∂xα are the standard basis vectors in Rn.
Their tangent parts can of course be expressed in the coor-
dinate basis: for some smooth functions ck

α ∈ C∞(U), we
have

π‖
(
∂

∂xα

)
=

∑
k

ck
α∂k.
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We now define the so-called Christoffel symbols [DE:
Christoffel-Symbole]

Γk
i j :=

∑
α

∂2ψα

∂u j ∂ui ck
α,

noting the symmetry Γk
i j = Γk

ji. We have Γk
i j ∈ C∞(U) for

1 ≤ i, j, k ≤ m.
Using these, the expression above for the covariant deriva-
tive of ∂i becomes

D∂i

dt
=

∑
j,k

Γk
i j

du j

dt
∂k.

We can consider in particular the covariant derivative along
a u j-coordinate curve, where u j = t and each other ui is
constant. We write this as

D∂i

∂u j =
∑

k

Γk
i j∂k.

That is, the Christoffel symbol Γk
i j is the ∂k component of

the covariant derivative of ∂i in direction ∂ j.
We can now return to the general case of the covariant
derivative of Y =

∑
bi∂i along γ; our formula becomes

DY
dt

=
∑

k

(dbk

dt
+

∑
i, j

Γk
i jb

i du j

dt

)
∂k.

Note here that we don’t see the coordinates in Rn at all; the
vector field Y and curve γ on M are expressed in the stan-
dard instrinsic ways in the coordinate chart (U, ϕ). The
embedding of M ⊂ Rn enters only in the computation of
the Christoffel symbols Γk

i j, and our goal will be to show
these really only depend on the Riemannian metric in-
duced on M by the embedding.
Now suppose Y =

∑
bk∂k is a vector field defined on all

of M (rather than just along γ) – its components bk are
now functions on U. We note that the covariant derivative
DY/dt at a point p = γ(t0) doesn’t depend on the whole
curve γ but only on its velocity vector Xp := γ̇(t0) there.
In particular, if we set a j := du j/dt then Xp =

∑
a j∂ j, and

in the formula above for DY/dt, the time derivative dbk/dt
(which is really the derivative of b ◦ γ) is the directional
derivative Xp(bk).
To emphasize this viewpoint, we introduce new notation
and write this covariant derivative of Y at p in the direction
Xp as ∇Xp Y . If X and Y are vector fields on M, we write
∇XY for the vector field whose value at p is ∇Xp Y . The
formulas above mean that if X =

∑
a j∂ j and Y =

∑
bk∂k

in some coordinate chart, then

∇XY =
∑

j,k

(
a j(∂ jbk) +

∑
i

Γk
i jb

ia j
)
∂k.

We have thus defined a connection [DE: Zusammenhang],
meaning an operation

∇ : X(M) × X(M)→ X(M), ∇ : (X,Y) 7→ ∇XY

that is bilinear (over R) and, as is easily verified, satisfies
the following two properties:

• it is C∞-linear in X:

∇ f XY = f∇XY;

• it satisfies a product rule in Y:

∇X( f Y) = (X f )Y + f∇XY.

Our connection satisfies two additional properties, which
– as we will later see – turn out to uniquely characterize it:

• it is symmetric in the following sense:

∇XY − ∇Y X = [X,Y] = LXY;

• it is compatible with the Riemannian metric:

X
〈
Y,Y ′

〉
=

〈
∇XY,Y ′

〉
+

〈
Y,∇XY ′

〉
.

To check the symmetry, we can use the product rules to
reduce to the case of X = ∂i and Y = ∂ j, where – since
[∂i, ∂ j] = 0 – it is equivalent to the fact that Γk

i j = Γk
ji. The

metric property (which can be written as ∇Xg = 0, as we
will explain later) is left as a (somewhat tedious) exercise.

C2. Connections on general vector bundles

Let us now move to a very general situation. Suppose E is
a vector bundle over a manifold M. A connection ∇ on E
allows us to take covariant derivatives of sections of E.
These are directional derivatives in the direction of some
vector field X ∈ X(M) and are again sections of the same
bundle E. That is, given a section σ ∈ Γ(E), its covariant
derivative (with respect to ∇) in direction X is the section
∇Xσ ∈ Γ(E). The formal definition is as follows:

Definition C2.1. Given a vector bundle E → M, a
connection [DE: Zusammenhang] on E is a bilinear map
∇ : X(M) × Γ(E)→ Γ(E), written (X, σ) 7→ ∇Xσ, which is
C∞(M)-linear in X and satisfies a product rule for σ:

∇ f Xσ = f∇Xσ, ∇X( fσ) = (X f )σ + f∇Xσ.

We call ∇Xσ the covariant derivative [DE: kovariante
Ableitung] of σ.

Note that the tensoriality (C∞M-linearity) implies that the
dependence on X is pointwise:

(
∇Xσ)p depends only on Xp

and can be written as ∇Xpσ. This covariant derivative of
course depends on more than just σp, but as for the other
derivatives we have studied, the product rule means that
the definition is local: if σ and τ have the same germ at p
(that is, agree in some open neighborhood U) then ∇Xpσ =

∇Xpτ.
To verify this, we again use the trick of picking a bump
function f supported within U with f ≡ 1 on some smaller
neighborhood of p, so that fσ = f τ. We calculate

∇Xp ( fσ) = f (p)∇Xpσ + (Xp f )σp = 1∇Xpσ + 0σp = ∇Xpσ,

with the same for τ. Indeed, it suffices that σ and τ agree
locally along some curve γ with γ̇(0) = Xp; this can per-
haps most easily be seen in coordinates, using the notation
we introduce below.
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There are many other ways to rephrase the definition of
a connection, for instance in terms of sections of various
induced bundles. For any fixed σ, we can consider ∇σ as
a map taking a vector field X to the section ∇Xσ. But the
pointwise dependence on X means that this acts pointwise
as a linear map TpM → Ep for each p ∈ M, an element of
L(TpM, Ep). That is, ∇σ can be viewed as a section of the
bundle L(T M, E) = E⊗T ∗M; such a section is often called
a vector-valued (or more precisely, E-valued) one-form. In
this picture, the connection ∇ is a map σ 7→ ∇σ from Γ(E)
to Γ(E ⊗ T ∗M). We will return to this idea later, but for
now we will stick to our more down-to-earth approach.
We have already seen one example of a connection: the
one on T M induced by an embedding M → Rn, which
satisfied not only the properties in this definition but also
two further properties. As in that case, any connection can
be expressed in coordinates via Christoffel symbols.
Suppose U is a coordinate neighborhood for M and a triv-
ializing neighborhood for E, with {∂i : 1 ≤ i ≤ dim M} the
coordinate frame for T M and {ea : 1 ≤ a ≤ rk E} a frame
for E. Then a connection ∇ is expressed in coordinates by
the Christoffel symbols [DE: Christoffel-Symbole] Γb

ia de-
fined by ∇∂i ea =

∑
b Γb

iaeb, so that in general for X =
∑

vi∂i
and σ =

∑
σaea we have

∇Xσ =
∑
i,b

vi
(
∂iσ

b +
∑

a

Γb
iaσ

a
)
eb.

Any collection of smooth functions Γb
ia describes a connec-

tion locally in this coordinate neighborhood.
The tangent space to the total space of E at each point
σp ∈ Ep ⊂ E has a natural vertical subspace [DE: ver-
tikaler Unterraum] of dimension k: the tangent space to
the fiber Ep or equivalently the kernel of the differential
Dσpπ of the projection π : E → M. Another way to view
a connection is as a choice of a complementary horizontal
subspace [DE: horizontaler Unterraum] of dimension m.
Given a section σ : M → E, its differential is of course a
map Dpσ : TpM → Tσ(p)E; we say that Dpσ(Xp) lies in
the horizontal subspace if ∇Xpσ = 0.

C3. The Levi-Civita Connection

Specializing to the case of connections on the tangent bun-
dle E = T M, we can compare ∇XY with ∇Y X. It is too
much to hope that these are the same for any vector fields
X and Y – the behavior when we replace X by f X is dif-
ferent. But this kind of effect is captured also in the Lie
bracket of the vector fields. We define the torsion [DE: Tor-
sion] of the connection as T∇(X,Y) := ∇XY −∇Y X− [X,Y].
This expression is C∞M-linear in each of its arguments, as
can easily be verified using our formulas for ∇X( f Y) and
[X, f Y].

Definition C3.1. The connection ∇ is said to be symmet-
ric [DE: symmetrisch] or torsion-free [DE: torsionsfrei] if
T∇(X,Y) = 0 for all X and Y , that is, if∇XY−∇Y X = [X,Y].

This is of course one of the properties we observed for the
connection induced from an embedding M ⊂ Rn. In terms
of a coordinate basis (where [∂i, ∂ j] = 0), we find that ∇ is
torsion-free if and only if ∇∂i∂ j = ∇∂ j∂i, or equivalently, in
terms of Christoffel symbols, Γk

i j = Γk
ji.

On a Riemannian manifold (M, g) we can also ask whether
a connection ∇ on T M is compatible with the metric. A
metric connection [DE: metrischer Zusammenhang] is one
satisfying

X
〈
Y,Z

〉
=

〈
∇XY,Z

〉
+

〈
Y,∇XZ

〉
.

One interpretation of this equation is as saying that the
metric tensor g is “parallel” with respect to ∇ in the sense
that its covariant derivatives vanish. More precisely, just
as we saw for the Lie derivative, a connection on one bun-
dle naturally induces connections on the dual bundle and
its tensor powers in such way that the natural product rules
hold. In particular, we could define the covariant derivative
of g as a section ∇Xg ∈ Γ

(
Q(T M)

)
via

X
(
g(Y,Z)

)
= (∇Xg)(Y,Z) + g(∇XY,Z) + g(Y,∇XZ).

Then we see that ∇ is a metric connection if and only if for
all X we have ∇Xg = 0.
We will now show that any Riemannian manifold has a
unique torsion-free metric connection ∇; this is called the
Levi-Civita connection [DE: Levi-Civita-Zusammenhang].
Note that we have already constructed such a connection
on any manifold M ⊂ Rn isometrically embedded in Eu-
clidean space; the uniqueness of the Levi-Civita connec-
tion now shows that our construction is actually indepen-
dent of the embedding. We give a proof due to Koszul,
using the fact that a vector field ∇XY on a Riemannian
manifold is specified by its inner products with arbitrary
vector fields Z.

Theorem C3.2. Any Riemannian manifold (M, g) has
a unique Levi-Civita connection, characterized by the
Koszul formula

2g(∇XY,Z) = X
(
g(Y,Z)

)
+ Y

(
g(X,Z)

)
− Z

(
g(X,Y)

)
+ g

(
[X,Y],Z

)
− g

(
[X,Z],Y

)
− g

(
[Y,Z], X

)
.

Proof. Because the metric is fixed, we write g(·, ·) as 〈·, ·〉.
The uniqueness amounts to checking that any Levi-Civita
connection does satisfy the Koszul formula. We use the
metric property to expand each of the first three terms; the
first (for instance) becomes 〈∇XY,Z〉 + 〈∇XZ,Y〉. We use
the symmetry to expand each of the last three terms; the
first (for instance) becomes 〈∇XY,Z〉 − 〈∇Y X,Z〉. Adding
everything we find that most terms cancel out; we are left
with 2 〈∇XY,Z〉.
It remains to show that the formula does define a Levi-
Civita connection. First, we claim that the right-hand side
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is tensorial (meaning C∞M-linear) in Z:

X
〈
Y, f Z

〉
+ Y

〈
X, f Z

〉
− f Z

〈
X,Y

〉
+

〈
[X,Y], f Z

〉
−

〈
[X, f Z],Y

〉
−

〈
[Y, f Z], X

〉
= (X f )

〈
Y,Z

〉
+ f X

〈
Y,Z

〉
+ (Y f )

〈
X,Z

〉
+ f Y

〈
X,Z

〉
− f Z

〈
X,Y

〉
+ f

〈
[X,Y],Z

〉
− f

〈
[X,Z],Y

〉
− (X f )

〈
Z,Y

〉
− f

〈
[Y,Z], X

〉
− (Y f )

〈
Z, X

〉
= f

(
X
〈
Y,Z

〉
+ Y

〈
X,Z

〉
− Z

〈
X,Y

〉
+

〈
[X,Y],Z

〉
−

〈
[X,Z],Y

〉
−

〈
[Y,Z], X

〉 )
This means that for any fixed X and Y , there is some one-
form ω such that the right hand side is ω(Z). But using
the metric g, this one-form equivalent to a vector field W
defined by 2g(W,Z) = ω(Z).
This construction ∇ : (X,Y) 7→ W is clearly bilinear in X
and Y . The facts that it is tensorial in X and satisfies the
product rule in Y are verified by calculuations similar to
the one above, now replacing X by f X or Y by f Y . Thus
the Koszul formula defines a connection ∇. What remains
to show is that it is symmetric and compatible with g.
To check the symmetry, note that the right-hand side of
the Koszul formula is symmetric in X and Y except for the
term

〈
[X,Y],Z

〉
. Thus

2
〈
∇XY,Z

〉
− 2

〈
∇Y X,Z

〉
=

〈
[X,Y],Z

〉
−

〈
[Y, X],Z

〉
= 2

〈
[X,Y],Z

〉
.

Since this holds for all Z, we conclude the connection is
torsion-free: ∇XY − ∇Y X = [X,Y].
To check the metric property, note that the right-hand side
is antisymmetric in Y and Z except for the term X

〈
Y,Z

〉
.

Thus

2
〈
∇XY,Z

〉
+ 2

〈
Y,∇XZ

〉
= 2X

〈
Y,Z

〉
as desired. �

Now we want to consider what the Levi-Civita connection
looks like in coordinates. We know the Christoffel symbols
for a torsion-free connection will be symmetric: Γk

i j = Γk
ji.

In terms of the components gi j := g(∂i, ∂ j) of the metric
tensor, we can express the metric property of ∇ as follows:

∂kgi j = ∂kg(∂i, ∂ j)
= g

(
∇∂k∂i, ∂ j

)
+ g

(
∂i,∇∂k∂ j

)
=

∑
`

(
Γ`kig` j + Γ`k jg`i

)
.

We can express this more simply in terms of another form
of Christoffel symbols. If we define

Γi jk :=
∑
`

Γ`i jgk` = g
(
∇∂i∂ j, ∂k

)
,

then we get ∂kgi j = Γki j + Γk ji. Using the symmetry Γi jk =

Γ jik, we can solve this system to give

2Γi jk = ∂ig jk + ∂ jgik − ∂kgi j.

Writing
(
gk`) for the matrix inverse of

(
gi j

)
, we have

Γk
i j =

∑
`

gk`Γi j` =
∑
`

gk`

2

(
∂ig j` + ∂ jgi` − ∂`gi j

)
.

2024 December 16: End of Lecture 19

C4. Parallel transport, holonomy, geodesics and the
exponential map

Suppose ∇ is a connection on some vector bundle E → M.
If γ : I → M is a smooth curve from p to q and σ is a sec-
tion of E, then we can write the covariant derivative [DE:
kovariante Ableitung] ofσ along γ as D

dtσ = ∇γ̇σ. (Here of
course we are conflating σ as a function on M with σ◦γ as
a function of t ∈ I, a section of the pullback bundle γ∗E.)
We say that σ is parallel [DE: parallel] along γ (with re-
spect to ∇) if this covariant derivative vanishes:

D
dt
σ = ∇γ̇σ = 0.

Given σp ∈ Ep, by standard ODE theorems, there is a
unique extension to a parallel section σ along γ. This
lets us define the parallel transport [DE: Paralleltransport]
map

Pγ : Ep → Eq, Pγ(σp) = σq.

It is an easy exercise to show that this parallel transport Pγ

(along γ, with respect to ∇) is an invertible linear map.
Note that this map is independent of the parametriza-
tion of γ. We can define Pγ even if γ is only piecewise
smooth by composing the parallel transport maps along
each smooth piece.
If γ is a loop based at p, then Pγ : Ep → Ep is an auto-
morphism of Ep, that is, Pγ ∈ GL(Ep). This is called the
holonomy [DE: Holonomie] of ∇ along γ.
The inverse loop has the inverse holonomy; the holonomy
along a concatenation of loops is the composition of their
holonomies. Thus

Holp(∇) := {Pγ : γ is a loop based at p} < GL(Ep)

is a subgroup of GL(Ep), called the holonomy group [DE:
Holonomiegruppe] of ∇ at p.
The fact that small (contractible) loops can have nontrivial
holonomy reflects the fact that ∇ can have nonzero curva-
ture, as defined below.
Note that the parallel transport maps Pγ completely char-
acterize the connection ∇: one could start with them in-
stead of the connection (as we did when first considering
the case of submanifolds in Rn). Their meaning is some-
what more intuitive. But, compared to the definition of
an abstract connection, it is harder to axiomatize just what
properties the parallel transport maps need to have.
Now consider a Riemannian manifold (M, g) and a con-
nection ∇ on T M.
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Exercise C4.1. The connection ∇ is compatible with the
metric g if and only if for any curve γ and any parallel vec-
tor fields Y , Z along γ, the inner product 〈Y,Z〉 is constant
along γ.

For a metric connection it follows that parallel fields have
constant length and make constant angles with each other.
For instance, if we parallel transport an orthonormal frame,
it remains orthonormal. Parallel transport is an orthogo-
nal map, so Holp(∇) < O(TpM). (Note that Holp(∇) <
SO(TpM) exactly when the component of M containing p
is orientable.)
If∇ and ∇̃ are two metric connections on (M, g) their paral-
lel transport maps along any γ differ only by a rotation. In
some sense the (torsion-free) Levi-Civita connection on M
is the one for which parallel fields rotate the least.
Let us now fix ∇ to be the Levi-Civita connection on a
Riemannian manifold (M, g).

Definition C4.2. A curve γ : I → M is called a
(parametrized) geodesic [DE: Geodäte] if its velocity γ̇ is
parallel along γ, that is, if

D
dt
γ̇ = ∇γ̇γ̇ = 0.

Note that a geodesic γ is then necessarily parametrized
at constant speed. A reparametrization at varying speed
would satisfy ∇γ̇γ̇ = a(t)γ̇. Another application of the the-
orem on existence and uniqueness of solutions to ODEs
shows that any tangent vector Xp ∈ TpM determines a
unique geodesic with initial velocity Xp:

Theorem C4.3. Given Xp ∈ TpM there is some ε > 0 and
a unique geodesic

γXp = γ : (−ε, ε)→ M

with γ̇(0) = Xp (implying γ(0) = p).

Note that γλXp (t) = γXp (λt) for any λ ∈ R; these geodesics
are the same curve parametrized at different constant
speeds.
If (U, ϕ) is a coordinate chart around p and xi(t) denote
the components of ϕ

(
γ(t)

)
then we can write the geodesic

equation explicitly in terms of the Christoffel symbols:

ẍk +
∑
i, j

Γk
i j(x)ẋi ẋ j = 0.

Since the solution to the geodesic equation depends
smoothly on the initial condition Xp, we can define
the (smooth) exponential map [DE: Exponentialabbildung]
expp : U → M on some neighborhood U ⊂ TpM of the
origin by expp(Xp) := γXp (1). (We simply need to choose
U small enough that the geodesics exist for time 1. We use
compactness of the unit sphere in TpM here.)
Even the dependence on p is smooth, so these maps fit to-
gether to give a map exp: W → M for some neighborhood
W ⊂ T M of the zero-section in the tangent bundle.

Definition C4.4. A Riemannian manifold M is called
(geodesically) complete [DE: (geodätisch) vollständig] if
every geodesic can be extended indefinitely, that is to
γ : R→ M.

The famous Hopf–Rinow theorem (which we will not
prove) says that M is geodesically complete if and only
if it is complete as a metric space (that is, every Cauchy
sequence converges). In particular, any compact manifold
is complete. Of course, if M is complete, the exponential
maps expp : TpM → M and exp: T M → M are defined
globally.
An easy calculation shows that D0 expp = idTp M (where
we identify the tangent space at 0 to the vector space TpM
with TpM). In particular, since this derivative is nonsin-
gular, by the inverse function, the exponential map is a
diffeomorphism from some neighborhood U 3 0 to its
image V ⊂ M. Its inverse exp−1

p : V → U then gives
a nice coordinate chart around p, as soon as we identify
TpM with Rm by picking an orthonormal basis {ei}. These
are called (Riemannian, geodesic) normal coordinates [DE:
Normalkoordinaten] at p.
Let {∂i} denote (as usual) the coordinate frame. Then at
p we have ∂i = ei, so the coordinate representation of the
Riemannian metric is gi j = δi j at p. Any geodesic through
p is represented in normal coordinates by a line through the
origin. In particular, the coordinate lines through the origin
are geodesics, meaning ∇∂i∂i = 0 along the ith coordinate
line through p, in particular at p. But also diagonal lines
correspond to geodesics, so

∇∂i+∂ j

(
∂i + ∂ j

)
= 0

at p. Using the bilinearity and symmetry of ∇ this implies
∇∂i∂ j = 0 at p. In other words, in normal coordinates,
the Christoffel symbols Γk

i j = 0 all vanish at p. It follows
immediately that the first derivatives of gi j all vanish at p,
that is, gi j = δi j to first order near p.
In normal coordinates around p, each geodesic through p
corresponds to a straight line through the origin. The im-
age Br(p) :=

{
expp Xp : ‖Xp‖ < r

}
of a ball in TpM

is called a geodesic ball [DE: geodätischer Ball] around
p ∈ M; similarly S r(p) :=

{
expp Xp : ‖Xp‖ = r

}
is a

geodesic sphere [DE: geodätische Sphäre].
For small r, the exponential map is a diffeomorphism, so
the geodesic sphere S r(p) is topologically a sphere and is
the boundary of the geodesic ball Br(p), which is a topo-
logical ball. (For larger r, the exponential map may still
exist but no longer be a diffeomorphism; these spheres and
balls will start to overlap and intersect themselves.)
Similarly, it is not hard to check that geodesics through
p meet each of these spheres orthogonally and that (for
r < r′ small enough) any curve from S r to S r′ has length at
least r′ − r. This implies that sufficiently short subacrs of
any geodesic are length minimizing – the shortest curves
connecting their endpoints. Thus the geodesic ball Br(p) is
always the metric ball in (M, d), the set of points at distance
less than r from p.
Similar considerations show that the map (π, exp) : Xp 7→

(p, exp Xp) is a local diffeomorphism T M → M × M.
For any p ∈ M, we can deduce the existence of ε > 0
and a neighborhood N such that any two points in N are
joined by a unique geodesic of length less than ε. With
more work, one can find a strongly geodesically convex
neighborhood [DE: streng geodätisch konvexe Umgebung]

35



J.M. Sullivan, TU Berlin C: Riemannian geometry Diff Geom II, WS 2024/25

U 3 p, where any two points in U are joined by a unique
minimizing geodesic in U.

2024 December 17: End of Lecture 20

C5. Riemannian curvature

Gauss showed in his Theorema Egregium that the Gauss
curvature of a surface, initially defined as the product of
principal curvatures, is actually an intrinsic notion, de-
pending not on the embedding in R3 but only on the first
fundamental form, that is, the Riemannian metric g.
Riemann’s idea was to describe the curvature of a higher-
dimensional Riemannian manifold (M, g) at p ∈ M in
terms of the Gauss curvatures of various two-dimensional
submanifolds (surfaces) through p.
Let U ⊂ TpM be an open subset such that expp : U → V ⊂
M is a diffeomorphism. For any two-plane Π ⊂ TpM, we
see that N := expp(U ∩ Π) is a two-dimensional submani-
fold of M with TpN = Π. Since N is a union of geodesics
through p, it is in some sense the flattest possible surface
with TpN = Π. Riemann defined the sectional curvature
[DE: Schnittkrümmung] K(Π) as the Gauss curvature at p
of this surface N. Below we will give a different, but equiv-
alent, definition.
To understand Gauss curvature in terms of the holonomy of
the Levi-Civita connection, let us recall the Gauss–Bonnet
theorem. If D ⊂ M is a disk with piecewise smooth bound-
ary in a surface M, then the integral of the Gauss curvature
K is ∫

D
K dA = 2π − TC(∂D).

Here, if γ = ∂D is the boundary curve, then TC(γ) denotes
the total geodesic curvature of γ, including the arclength
integral

∫
κg ds along the smooth pieces and the sum of

the turning angles τi at the corners.
But suppose we compare the unit tangent vector γ′ to a
vector X that is parallel transported along γ. The geodesic
curvature κg is the rate at which γ′ turns relative to X. Go-
ing once around γ, the tangent vector γ′ returns to its intial
value, but X does not; the holonomy of parallel translation
is a rotation by angle 2π − TC(∂D). (The additive constant
2π is chosen to make the holonomy additive when combin-
ing adjacent regions, or equivalently to make the holonomy
of a small region be small.) That is, the Gauss–Bonnet
theorem says that the holonomy around a loop equals the
integral of Gauss curvature over the enclosed region.
Thus the Gauss–Bonnet theorem can be used to find K(p)
by measuring the holonomy of small loops around p and
dividing by the enclosed area. One can say the holonomy
around an infinitesimal loop at p is an infinitesimal rotation
at speed K.
The modern definition of Riemannian curvature starts from
the idea that given a two-plane Π ⊂ TpM, the holonomy
around an infinitesimal loop in Π will give an infinites-
imal rotation of TpM. The two-plane Π is specified by
a two-vector, and the infinitesimal rotation is given by a

(skew-symmetric) operator on TpM saying in which direc-
tion each vector moves.
So suppose we have vector fields X and Y near p ∈ M. We
consider parallel transport for time s along X followed by
time t along Y , and compare this with going the other way
around. Of course if [X,Y] , 0 this isn’t even a closed
loop, but let’s assume for the moment that [X,Y] = 0. For
small s and t, the holonomy around this loop will be ap-
proximately st times what we call the curvature R(X,Y).
(More precisely, the curvature will be an infinitesimal ro-
tation, given by a skew-symmetric matrix A and the holon-
omy will be a rotation, given approximately by the orthog-
onal matrix exp(stA).)
In general, of course we need to correct by [X,Y]. Re-
call that this Lie bracket is the commutator of directional
derivatives:

0 = X(Y f ) − Y(X f ) − [X,Y] f .

This inspires the following definition.

Definition C5.1. On a Riemannian manifold, the Rieman-
nian curvature operator [DE: Riemann’scher Krümmung-
soperator] is given by

R(X,Y)Z := ∇X
(
∇YZ

)
− ∇Y

(
∇XZ

)
− ∇[X,Y]Z.

(Note that some authors define R with the opposite sign.)

Lemma C5.2. On any Riemannian manifold the curva-
ture operator R(X,Y)Z is tensorial – its value at p depends
only on Xp, Yp and Zp. In particular, R(Xp,Yp) is a linear
operator on TpM.

The proof proceeds by checking that

R( f X,Y)Z = R(X, f Y)Z = R(X,Y)( f Z) = f R(X,Y)Z,

which follows from the product rules we have for the Lie
bracket and covariant derivative. The details are left as an
exercise.
As an aside, we note that the same formula can be used
to define the curvature of any connection ∇ on any vector
bundle E → M, and the same lemma holds. We get a
curvature operator R∇(Xp,Yp) : Ep → Ep defined by

R∇(X,Y)σ := ∇X
(
∇Yσ

)
− ∇Y

(
∇Xσ

)
− ∇[X,Y]σ.

For example, the formula 0 = X(Y f ) − Y(X f ) − [X,Y] f
says that on the trivial line bundle M × R (whose sections
are just functions f ), the trivial connection (where the co-
variant derivative is just the ordinary directional derivative,
∇X f := X f ) has curvature zero.
We will, however, consider only the Riemannian curva-
ture coming from the Levi-Civita connection. On an inner
product space like TpM, a linear operator is equivalent to
bilinear form. Hence we also get the Riemannian curva-
ture tensor [DE: Riemann’scher Krümmungstensor]

R(X,Y,Z,W) :=
〈
R(X,Y)Z,W

〉
.

(Note that some authors switch Z and W here, introduc-
ing a minus sign. We will usually stick to the notation〈
R(X,Y)Z,W

〉
.)

36



J.M. Sullivan, TU Berlin C: Riemannian geometry Diff Geom II, WS 2024/25

In coordinates (U, ϕ), with respect to the coordinate frame
{∂i}, the curvature operator and curvature tensor have com-
ponents given by

R(∂k, ∂`)∂i =:
∑

R j
i k`∂ j,〈

R(∂k, ∂`)∂i, ∂ j
〉

=: Ri jk` =
∑

m

g jmR m
i k`.

Note that the order and position of the indices is somewhat
a matter of convention.
Exercise C5.3. We can express these components in terms
of the Christoffel symbols and their derivatives:

R j
i k` = ∂kΓ

j
i` − ∂`Γ

j
ik +

∑
m

(
Γm

i`Γ
j
mk − Γm

ikΓ
j
m`

)
.

2025 January 6: End of Lecture 21

C6. Symmetries of the Riemannian curvature

As a tensor of rank four, the Riemannian curvature is a
fairly complicated object. To understand it better, it is im-
portant to consider its symmetries.

Theorem C6.1. The Riemannian curvature satisfies the
following symmetries:

(1) R(X,Y) = −R(Y, X),
(2)

〈
R(X,Y)Z,W

〉
= −

〈
R(X,Y)W,Z

〉
,

(3) R(X,Y)Z + R(Y,Z)X + R(Z, X)Y = 0,
(4)

〈
R(X,Y)Z,W

〉
=

〈
R(Z,W)X,Y

〉
.

The antisymmetry (1) is immediate from the defintion of
the operator R(X,Y), and means we can think of this oper-
ator as depending on the two-vector X ∧ Y .
The further antisymmetry (2) is equivalent to saying that
R(X,Y) is an infinitesimal rotation, as we expect it should
be.
Property (3) is often called the first (or algebraic) Bianchi
identity, but is originally due to Ricci. It is probably best
thought of as a variant of the Jacobi identity, noting the
similarity to LXLYZ + LY LZ X + LZ LXY = 0.
All four symmetries involve different permutations of the
vector fields X, Y , Z, W, and are related to each other.
Thus, a more sophisticated approach would study them in
terms of representations of the symmetric group S 4. For
instance, it is easy to see that, given (4), properties (1) and
(2) are equivalent.
Instead, we start by observing that (4) is an algebraic con-
sequence of the first three. For this, write (3) as〈

R(X,Y)Z,W
〉

+
〈
R(Y,Z)X,W

〉
+

〈
R(Z, X)Y,W

〉
= 0.

Then cyclically permute XYZW to get〈
R(Y,Z)W, X

〉
+

〈
R(Z,W)Y, X

〉
+

〈
R(W,Y)Z, X

〉
= 0.

Add these two and subtract the remaining two cyclic per-
mutations. Using the antisymmetries (1) and (2), the result
follows.

Proof. It remains to show properties (2) and (3). By ten-
soriality, it suffices to prove (3) for the commuting basis
vector fields X = ∂i, Y = ∂ j, Z = ∂k. We will abbreviate
∇i := ∇∂i . First note that R(∂i, ∂ j)∂k = ∇i(∇ j∂k)−∇ j(∇i∂k).
Thus the sum of three terms can be written as

∇i
(
∇ j∂k − ∇k∂ j

)
+ ∇ j

(
∇k∂i − ∇i∂k

)
+ ∇k

(
∇i∂ j − ∇ j∂i

)
.

Because the Levi-Civita connection is torsion-free, each of
the expressions in parentheses is a Lie bracket like [∂ j, ∂k],
but these all vanish.
For (2) it also suffices to consider X = ∂i, Y = ∂ j. Since
the symmetric part of a bilinear form in determined by its
associated quadratic form, to show the antisymmetry (2) it
suffices to prove

0 =
〈
R(∂i, ∂ j)Z,Z

〉
=

〈
∇i(∇ jZ) − ∇ j(∇iZ),Z

〉
.

That is, it suffices to prove that
〈
∇i(∇ jZ),Z

〉
is symmetric

in i and j. To do so, consider second derivatives of the
function 〈Z,Z〉, using the metric compatibility of ∇:

∂ j
(
∂i 〈Z,Z〉

)
= ∂ j

(
2
〈
Z,∇iZ

〉)
= 2

〈
Z,∇ j(∇iZ)

〉
+ 2

〈
∇ jZ,∇iZ

〉
.

The last term is clearly symmetric, and the left-hand side
is symmetric since [∂i, ∂ j] = 0, so we are done. �

The antisymmetry properties (1) and (2) mean that the cur-
vature tensor really can and should be thought of as a bi-
linear form on the space Λ2TpM of two-vectors:

S (X ∧ Y,Z ∧W) := −
〈
R(X,Y)Z,W

〉
(extended by bilinearity to nonsimple two-vectors). Prop-
erty (4) is then simply the symmetry of S :

S (X ∧ Y,Z ∧W) = S (Z ∧W, X ∧ Y);

this symmetry of course holds for arbitrary two-vectors,
not just simple ones. In these terms, the Bianchi identity
(3) gets no simpler:

S (X ∧ Y,Z ∧W) + S (Y ∧ Z, X ∧W) + S (Z ∧ X,Y ∧W) = 0.

If X,Y is an orthonormal basis for a two-plane Π ⊂ TpM,
then K(Π) := S (X ∧ Y, X ∧ Y) = R(X,Y,Y, X) is called the
sectional curvature [DE: Schnittkrümmung] of Π. It turns
out that this agrees with Riemann’s original notion: it is
the Gauss curvature of the “flattest” surface N ⊂ M with
TpN = Π, the image of Π under the exponential map expp,
the union of the geodesics through p tangent to Π. (We
will prove this later as Theorem C14.3.)
The inner product g on TpM induces an inner product on
Λ2TpM as follows:〈〈

X ∧ Y,Z ∧W
〉〉

:= 〈X,Z〉 〈Y,W〉 − 〈X,W〉 〈Y,Z〉 .

This is also a symmetric bilinear form satisfying symmetry
property (3). Of course the squared length of a simple two-
vector X ∧ Y , given by〈〈

X ∧ Y, X ∧ Y
〉〉

= 〈X, X〉 〈Y,Y〉 − 〈X,Y〉2 ,
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is the squared area of the parallelogram spanned by X
and Y . In terms of an arbitrary basis X,Y for a two-plane
Π ⊂ TpM we have

K(Π) =
S (X ∧ Y, X ∧ Y)〈〈

X ∧ Y, X ∧ Y
〉〉 .

Since any symmetric bilinear form is determined by the as-
sociated quadratic form, it is perhaps not surprising that the
sectional curvatures of all two-planes determine R com-
pletely – but note that here we are considering only simple
two-vectors. The following lemma (applied to the differ-
ence of two possible tensors with the same sectional cur-
vatures) takes care of this problem.

Lemma C6.2. Suppose S is a symmetric bilinear form on
Λ2V satisfying the Bianchi identity

S (X ∧ Y,Z ∧W) + S (Y ∧ Z, X ∧W) + S (Z ∧ X,Y ∧W) = 0.

If S (X ∧ Y, X ∧ Y) = 0 for all X and Y, then S = 0.

Proof. First compute

0 = S
(
(X + Y) ∧ Z, (X + Y) ∧ Z

)
= S (X ∧ Z,Y ∧ Z) + S (Y ∧ Z, X ∧ Z)
= 2S (X ∧ Z,Y ∧ Z).

Now using this we get

0 = S
(
X ∧ (Z + W),Y ∧ (Z + W)

)
= S (X ∧ Z,Y ∧W) + S (X ∧W,Y ∧ Z).

Then we use this to show

S (Y ∧ Z, X ∧W) = S (X ∧W,Y ∧ Z) = −S (X ∧ Z,Y ∧W)
= S (Z ∧ X,Y ∧W).

That is, S is invariant under a cyclic permutation of XYZ.
But we have assumed the sum of all three cyclic permuta-
tions is zero, so we find S = 0. �

Note that actually there is a formula with 16 terms giving

6S (X ∧ Y,Z ∧W)
= S

(
(X + Z) ∧ (Y + W), (X + Z) ∧ (Y + W)

)
− S

(
(X + Z) ∧ Y, (X + Z) ∧ Y

)
+ · · · .

As noted above, this lemma suffices to prove the following
theorem.

Theorem C6.3. The sectional curvatures K(Π) of two-
planes Π ⊂ TpM completely determine the Riemannian
curvature (operator or tensor) at p ∈ M.

2025 January 7: End of Lecture 22

C7. Flat metrics

We next wish to examine the case of Riemannian mani-
folds with curvature zero.
We start with some results about commuting vector fields
that we could have proved earlier.

Theorem C7.1. Suppose f : M → M is a diffeomorphism
and X ∈ X(M) is a vector field with local flow θt and inte-
gral curves γp. Then the following are equivalent:

• X is f -invariant: X = f∗X,
• f maps flow lines to flow lines: f ◦ γp = γ f (p),
• f commutes with the local flow: f ◦ θt = θt ◦ f .

We leave the proof as an exercise. (Compare Boothby
IV.5.7.) Applying the theorem to the case where f is the
flow of another vector field Y , we get the following. (Com-
pare Boothby IV.7.12.)

Corollary C7.2. If χs and θt are the local flows of vector
fields X and Y, respectively, then X and Y commute in the
sense that [X,Y] = 0 if and only if the flows commute,
meaning that for any p ∈ M we have χs

(
θt(p)

)
= θt

(
χs(p)

)
whenever |s| and |t| are sufficiently small.

If we have a whole frame of commuting vector fields, then
their flows all commute, and we will show that they are the
coordinate vector fields in an appropriate coordinate chart.
This is a version of the standard compatibility conditions
for the existence of solutions to a first-order PDE. (The
basic example is the condition gy = hx for the equation
fx = g, fy = h. This condition is obviously necessary, but
is also sufficient: we can find f by iterated integration.)

Corollary C7.3. Suppose {Xi} is a frame of commuting
vector fields, meaning [Xi, X j] = 0. Then around any p ∈
M there is a coordinate chart (U, ϕ) such that Xi = ∂i are
the coordinate vector fields.

Sketch of proof. We first consider the flow line γp of X1
through p, defining ϕ

(
γp(t)

)
:= (t, 0, . . . , 0). Then from

each point along this line, we consider the flow line of X2
to define the second coordinate. Because [X1, X2] = 0,
the x1-coordinate lines not through p are also flow lines of
X1. We continue by induction, flowing along X3, . . . , Xm
in that order to define ϕ on a whole neighborhood of p.
Equivalently, if θi denotes the flow of Xi, then in the end
we have

ϕ−1(t1, t2, . . . , tm) = θm
tm
(
· · · θ2

t2
(
θ1

t1 (p)
)
· · ·

)
.

From this formula, it is clear that the last coordinate vector
field is ∂m = Xm. But the commutativity means that the
flows on the right-hand side can be permuted arbitrarily,
so we have ∂i = Xi for all i, as desired. �

As an aside, we briefly remark on a generalization of this
result. A k-plane distribution ∆ on M is a smooth choice
of a k-dimensional subspace ∆p ⊂ Tp(M) in each tangent
space. It is called involutive if whenever X and Y are vector
fields tangent to ∆ (meaning Xp,Yp ∈ ∆p for all p), their
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Lie bracket [X,Y] is also tangent to ∆. It is called com-
pletely integrable if through each p ∈ M there is locally a
k-dimensional submanifold N such that TqN = ∆q for all
q ∈ N.
As an example, consider the two-plane distribution on R3

spanned by X1 = ∂1 and X2 = ∂2+x1∂3. It is nowhere invo-
lutive and thus forms what is known as a contact structure
on R3. For instance at the origin, Xi = ∂i but [X1, X2] = ∂3.
A completely integrable distribution is certainly involutive,
since the Lie bracket of vector fields tangent to N is again
tangent to N. The Frobenius Theorem (compare Boothby
IV.8.3) says that the converse holds as well: ∆ is involu-
tive if and only if it is completely integrable. The proof
proceeds first by showing that given any involutive ∆ we
can locally find k commuting vector fields spanning ∆p at
each point. We then use their flows, as in the proof of
Corollary C7.3, to find a coordinate chart for the submani-
fold N.
Now we turn to the result we want about flat manifolds.

Theorem C7.4. A Riemannian manifold Mm is locally iso-
metric to Rm if and only if it is flat [DE: flach] in the sense
that its Riemannian curvature vanishes.

We will merely outline the proof, using Corollary C7.3
along with one further lemma, which can again be inter-
preted as giving the compatibility condition for a PDE to
have a solution.
So far we have considered vector fields (or more generally
sections of a vector bundle with a connection) which are
parallel along a given curve γ. We say a section is parallel
[DE: parallel] if is it parallel along all curves, that is, if its
covariant derivative in every direction vanishes. For many
connections, the the zero section is the only parallel sec-
tion in this sense. The lemma interprets the vanishing of
curvature as a compatibility condition for the existence of
a frame of parallel sections.

Lemma C7.5. Given a connection ∇ on a vector bundle
E → M we have R∇ ≡ 0 if and only if locally around any
point p ∈ M there is a frame {σa} of parallel sections,
meaning sections satisfying ∇Xσa = 0 for every vector
field X.

Sketch of proof. One direction is easy, since a parallel sec-
tionσa has vanishing holonomy around any loop, implying
R∇(X,Y)σa = 0.
For the converse, we work in a coordinate chart around
p ∈ M, and start with an arbitrary basis {σa} for Ep.
We parallel transport each basis vector first along the flow
line of ∂1 through p, then from there along the flow lines
of ∂2. The vanishing of curvature R∇(∂1, ∂2) shows that
the resulting sections over this two-dimensional surface
patch S are parallel also along ∂1, hence along any curve
in S . We continue by induction, parallel transporting along
∂3, . . . , ∂m in that order. �

Applying this lemma to a manifold with vanishing Rie-
mannian curvature, we can pick an orthonormal frame for
TpM and extend it to an parallel frame {Ei} on some neigh-
borhood of p. By the properties of Riemannian parallel

transport, this frame is orthonormal at every point. Be-
cause the Levi-Civita connection is symmetric, these vec-
tor fields then commute:

[Ei, E j] = ∇Ei E j − ∇E j Ei = 0 − 0 = 0.

In the coordinate chart (U, ϕ) we get by applying Corol-
lary C7.3 to our orthonormal frame {Ei} we have gi j ≡ δi j.
That means that ϕ is a local isometry from U to Rm, finish-
ing the outline of the proof of the theorem.

C8. The differential Bianchi identity and constant
curvature metrics

Recall that the connection on the tangent bundle induces
connections on the various associated bundles like tensor
bundles, through Leibniz-style product rules. Thus we can
talk about the covariant derivative of the curvature opera-
tor, meaning(
∇XR

)
(Y,Z)W := ∇X

(
R(Y,Z)W

)
− R

(
∇XY,Z

)
W − R

(
Y,∇XZ

)
W − R(Y,Z)∇XW.

As for the covariant derivative of any tensor field, this is
tensorial, meaning it is C∞-linear in each of its four argu-
ments. The following symmetry property of these covari-
ant derivatives is called the (differential or second) Bianchi
identity [DE: Bianchi-Identität].

Proposition C8.1. The covariant derivative of the Rie-
mannian curvature satisfies

0 =
(
∇XR

)
(Y,Z)W +

(
∇YR

)
(Z, X)W +

(
∇ZR

)
(X,Y)W.

Proof. By tensoriality we can assume that X,Y,Z,W are
basis vector fields from a coordinate frame {∂i} and thus
that they commute with each other. Then because the terms
with Lie brackets can be omitted, we get(

∇XR
)
(Y,Z)W = ∇X∇Y∇ZW − ∇X∇Z∇YW

− R(∇XY,Z)W − R(Y,∇XZ)W
− ∇Y∇Z∇XW + ∇Z∇Y∇XW.

Using the commutativity of the vector fields again, this
time in the form ∇XZ = ∇Z X, we can replace −R(Y,∇XZ)
by +R(∇Z X,Y).
Next we write the corresponding expansions with X,Y,Z
cyclically permuted. When we add the three right-hand
sides, we find that everything cancels to give zero. �

We will use this Bianchi identity to prove a theorem of
Schur saying that isotropic manifolds actually have con-
stant curvature.

Definition C8.2. A Riemannian manifold M is called
isotropic [DE: isotrop] at p ∈ M if K(Π) is a constant K(p)
independent of the two-plane Π ⊂ TpM. If K(Π) ≡ K is
constant for all two-planes in all tangent spaces TpM, we
say M has constant curvature [DE: konstante Krümmung].
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Note that if we set

R1(X,Y)Z := 〈Y,Z〉 X − 〈X,Z〉Y,

then this is an operator with the same symmetries as the
Riemannian curvature operator. Indeed it would be the cur-
vature operator for a metric of constant curvature K ≡ 1,
since it is just a reformulation of the inner product on
Λ2TpM we used above:

− 〈R1(X,Y)Z,W〉 =
〈〈

X ∧ Y,Z ∧W
〉〉
.

We see that M being isotropic at p simply means that the
Riemann curvature operator is R = K(p)R1 there.

Lemma C8.3. We have ∇XR1 = 0.

We leave the proof as an exercise using the metric compat-
ibility of the Levi-Civita connection.

Theorem C8.4. Suppose Mm is a connected Riemannian
manifold of dimension m ≥ 3 which is isotropic at every
point p ∈ M. Then M has constant curvature.

Note that this is of course false for m = 2: any surface is
trivially isotropic but need not have constant Gauss curva-
ture.

Proof. We have R(X,Y)Z = KR1(X,Y)Z for some smooth
function K : M → R. Taking derivatives and using the
lemma we find(

∇XR
)
(Y,Z)W = (XK)R1(Y,Z)W

= (XK)
(
〈Z,W〉Y − 〈Y,W〉Z

)
.

Adding this to its cyclic permutations (in X,Y,Z), the left-
hand side vanishes by the Bianchi identity. So rearranging
the right-hand side, we get

0 =
(
(ZK) 〈Y,W〉 − (YK) 〈Z,W〉

)
X

+
(
(XK) 〈Z,W〉 − (ZK) 〈X,W〉

)
Y

+
(
(YK) 〈X,W〉 − (XK) 〈Y,W〉

)
Z

For any X ∈ TpM, since m ≥ 3, we can choose Y,Z
such that X,Y,Z are orthogonal, in particular linearly in-
dependent. Then each of the three coefficients vanishes:
0 = (XK) 〈Z,W〉 − (ZK) 〈X,W〉, etc. Taking W = Z gives
XK = 0. Thus an arbitrary directional derivative of the cur-
vature function K vanishes, proving that it is locally con-
stant, and thus constant on the connected manifold M. �

2025 January 13: End of Lecture 23

The following theorem can be proved most easily by using
calculations in normal coordinates; we skip the proof.

Theorem C8.5. Any two m-manifolds of the same constant
curvature K are locally isometric.

Of course if we rescale a Riemannian metric g by a con-
stant factor λ, it is easy to see that the Riemannian curva-
ture scales by λ−2. Up to scaling, any manifold of nonzero
constant curvature has curvature K = ±1.

The standard example of a manifold of constant curvature
K ≡ 1 is the unit sphere Sm ⊂ Rm+1. Indeed, the sphere has
enough symmetries to show immediately that the sectional
curvature is constant. The exponential image of any two-
plane is a unit two-sphere with K = 1. Similarly, the stan-
dard example of a manifold of constant curvature K ≡ −1
is hyperbolic space Hm, which we will define below.
Using the theory of covering spaces, one obtains in the end
the following classification theorem.

Theorem C8.6. Any complete, connected manifold of con-
stant curvature is, up to rescaling, isometric to the quotient
of Sm or Rm or Hm by some discrete, fixed-point free group
of isometries.

C9. Hyperbolic space

One approach to define the hyperbolic space Hm, the com-
plete, simply connected space of constant curvature K ≡
−1 is as a “unit sphere” in Lorentz space Rm,1, but this re-
quires developing the theory of pseudo-Riemannian man-
ifolds (with indefinite scalar product). Instead, we will
model Hm as open subset of Rm with a metric conformally
equivalent to the flat one.
Suppose ϕ : U → R is a smooth function on an open set
U ⊂ Rm. Consider the Riemannian metric on U given by
gi j := e−2ϕδi j. Abbreviating the derivatives of ϕ as ϕk :=
∂kϕ we can compute the Christoffel symbols as

Γk
i j = −ϕiδ jk − ϕ jδik + ϕkδi j.

This vanishes if i, j, k are distinct; otherwise it simplifies to

Γi
ii = −ϕi, Γ

j
ii = ϕ j, Γi

i j = Γi
ji = −ϕ j.

Now for the Riemannian curvature, we first note that
Ri jk` =

∑
g jmR m

i k` = e−2ϕR j
i k`. Using the formula

R j
i k` = ∂kΓ

j
i` − ∂`Γ

j
ik +

∑
m

(
Γm

i`Γ
j
mk − Γm

ikΓ
j
m`

)

mentioned earlier for the Riemannian curvature, we see
immediately that R j

i k` (or equivalently Ri jk`) vanishes if
the four indices are distinct. With three distinct indices,
we have

R j
i k j = ∂kΓ

j
i j − 0 +

∑
m

(
Γm

i jΓ
j
mk − Γm

ikΓ
j
m j

)
.

but the sum reduces to Γ
j
i jΓ

j
jk = ϕiϕk so we get

R j
i k j = −ϕik + ϕiϕk, Ri jk j = e−2ϕ(−ϕik + ϕiϕk

)
.
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With just two distinct indices, we obtain

R j
i i j = ∂iΓ

j
i j − ∂ jΓ

j
ii +

∑
m

(
Γm

i jΓ
j
mi − Γm

ii Γ
j
m j

)
= −ϕii − ϕ j j + Γi

i jΓ
j
ii + Γ

j
i jΓ

j
i j

− Γi
iiΓ

j
i j + Γ

j
iiΓ

j
j j −

∑
m,i, j

Γm
ii Γ

j
m j

= −ϕii − ϕ j j − ϕ
2
j + ϕ2

i − ϕ
2
i + ϕ2

j +
∑
m,i, j

ϕ2
m

=
∑

m

ϕ2
m − ϕ

2
i − ϕ

2
j − ϕii − ϕ j j.

It follows, for instance, that the sectional curvature of the
plane Πi j spanned by the orthogonal vectors ∂i and ∂ j is

K
(
Πi j

)
=

Ri j ji

giig j j
= −e2ϕR j

i i j

= −e2ϕ
(∑

m

ϕ2
m − ϕ

2
i − ϕ

2
j − ϕii − ϕ j j

)
.

Now we consider the special case we are interested in,
where U = {x1 > 0} is a halfspace, and gi j = δi j/(x1)2,
corresponding to ϕ(x) = log(x1). Then ϕ1 = 1/x1 and
ϕ11 = −1/(x1)2, while the other derivatives vanish. Thus
K
(
Π1 j

)
= e2ϕϕ11 = −1 and also K

(
Πi j

)
= −e2ϕϕ2

1 = −1. Of
course, it is not sufficient to just compute the sectional cur-
vatures of these coordinate planes. But in fact our formulas
for all the R j

i k` show that in this case R = −R1 or equiva-
lently Ri jk` = −

(
gi jgk` − gikg j`

)
= −

(
δi jδk` − δikδ j`

)
/
(
x1)4.

We define the m-dimensional hyperbolic space to be this
Riemannian manifold (U, g). One can compute that the
geodesics are the rays and semicircles perpendicular to the
bounding plane {x1 = 0}. Each of these has infinite length
in both directions, so the space is complete. The isometries
of Hm correspond to those Möbius transformations of Rm

that preserve U.
Another equivalent conformal model for Hm uses ϕ =

log(1 − |x|2) − log 2 on the unit ball U = {|x| < 1}. This
should be compared to the coordinate chart for Sm under
stereographic projection, where on U = Rm we get the
metric specified by ϕ = log(1 + |x|2) − log 2.

C10. Pinched curvature

We outlined the theorem that a complete, simply connected
manifold Mm with constant sectional curvature K > 0 is
isometric to a round sphere of radius 1/

√
K. If we drop

the assumption of completeness, then examples become
too varied to describe easily. But if we instead drop the
assumption that M is simply connected, the theory of cov-
ering spaces and fundamental groups shows that M is a
quotient of Sm by some discrete group Γ of isometries (act-
ing without fixed points).
One example is real projective space

RPm =
(
Rm+1 r {0}

)
/R∗ = Sm/{±1},

the quotient of the sphere by the antipodal map.
Using linear algebra, it is not hard to show that this is the
only example if m is even: We view Γ as a subgroup of the
orthogonal group On+1. Each orthogonal matrix A ∈ Γ has
eigenvalues which are either ±1 or come in complex pairs.
Since the action is fixed-point free, only the identity I ∈ Γ

can have +1 as an eigenvalue. Since n + 1 is odd, any A
has at least one real eigenvalue ±1. Then A2 ∈ Γ has +1 as
an eigenvalue, so A2 = I. This implies that all eigenvalues
of A are ±1. Since a nonidentity element cannot have any
eigenvalue +1, the only two allowed cases are all +1 or all
−1, that is A = ±I.
On the other hand, for odd m = 2n + 1 > 1 there are
infinitely many examples, many best understood by con-
sidering S2n+1 ⊂ Cn+1. Any unit complex number z = eiθ

acts by multiplication on each component of (z0, . . . , zn) ∈
Cn+1, giving a rotation of S2n+1. In particular, choosing
z = e2πi/k gives an action of the finite cyclic group Zk of or-
der k. The quotient S2n+1/Zk is a specific example of a lens
space [DE: Linsenraum]; the quotient metric has constant
sectional curvature K ≡ 1.
What if we consider manifolds with positive scalar curva-
ture “pinched” between two constants? Complex projec-
tive space

CPn =
(
Cn+1 r {0}

)
/C∗ = S2n+1/S1,

which is simply connected, provides a canonical example.
Here, the action of the unit circle S1 is the same diagonal
action on Cn+1 considered above. But the quotient map is
no longer a local isometry, because we are collapsing one
dimension. Instead it is a Riemannian submersion [DE:
Riemann’sche Submersion], and formulas due to O’Neil
allow a straightforward computation of the curvatures of
the quotient space: the sectional curvatures of CPn with
this natural metric (also called the Fubini–Study metric)
satisfy 1 ≤ K ≤ 4. Also other so-called rank-one symmet-
ric spaces have metrics with the same bound.
This led to a conjecture that the sphere is the only
complete, simply connected manifold admitting a strictly
“quarter pinched” metric, with sectional curvatures vary-
ing by a factor less than 4. In 1960, Berger and Klingen-
berg independently proved that if Mm has 1 < K ≤ 4 then
M is homeomorphic to Sm. Of course the existence of ex-
otic spheres (Milnor, 1956) leads us to ask whether M is
diffeomorphic to (the standard) Sm. In 2009, Brendle and
Schoen used Ricci flow to prove this “differentiable sphere
theorem”, even under the weaker assumption of pointwise
pinched curvature:

Theorem C10.1. If a complete, simply connected mani-
fold Mm satisfies at each p ∈ M the bound 0 < K(Π) <
4K(Π′) for any two 2-planes Π,Π′ ⊂ TpM, then M ad-
mits a metric of constant sectional curvature, and is thus
diffeomorphic to Sm.

2025 January 14: End of Lecture 24

41



J.M. Sullivan, TU Berlin C: Riemannian geometry Diff Geom II, WS 2024/25

C11. Ricci curvature

We recall from linear algebra that the trace [DE: Spur] of
a linear operator A : V → V on an m-dimensional vector
space V (that is, an endomorphism [DE: Endomorphismus]
of V) is defined as tr A :=

∑
i Ai

i, where
(
A j

i
)

is the matrix
representation of A in an arbitrary basis. Equivalently, the
trace is the sum of the eigenvalues (with multiplicities).
Note that a more invariant definition uses the identification
End(V) = L(V,V) � V ⊗ V∗, where v ⊗ ω is identified
with the (rank-one) endomorphism w 7→ ω(w)v. Then we
define tr(v⊗ω) := ω(v) and extend linearly to all of V⊗V∗.
Now suppose that V has an inner product 〈·, ·〉. Asso-
ciated to the linear operator A is then the bilinear form
(v,w) 7→ 〈Av,w〉. Choosing any orthonormal basis {ei}, we
have tr(A) =

∑
i 〈Aei, ei〉. If we average this formula over

all orthonormal bases (that is, over the group O(V) � Om)
we note that each unit vector e ∈ V occurs equally often.
Thus we can express the trace as (m times) an average over
the sphere of unit vectors:

tr(A) = m ave
〈e,e〉=1

〈Ae, e〉 .

(Technically, this average is an integral with respect to the
rotation-invariant probability measure on the sphere.)
Suppose we want to use the trace to simplify the Rieman-
nian curvature. The curvature operator Z 7→ R(X,Y)Z
we have discussed before is skew-symmetric (with respect
to g), so it of course has trace zero. But consider instead
the operator Z 7→ R(Z, X)Y . We define the Ricci tensor
[DE: Ricci-Tensor] of M as the bilinear form

Ric(X,Y) := tr
(
Z 7→ R(Z, X)Y

)
on each TpM. For any orthonormal basis {ei} of TpM, we
have according to the formulas above for trace,

Ric(X,Y) =

m∑
1

〈R(ei, X)Y, ei〉 =

m∑
1

S
(
X ∧ ei,Y ∧ ei

)
.

This formula makes it clear that Ric is a symmetric bilinear
form on TpM. In coordinates it has the components Rici j =∑

k R k
i k j.

To understand its geometric meaning, we focus on the as-
sociated quadratic form. Suppose X ∈ TpM is a unit vec-
tor and choose an orthonormal basis {e1, e2, . . . , em = X}
including X. Then

Ric(X, X) = tr
(
Z 7→ R(Z, X)X

)
=

m∑
i=1

〈R(ei, em)em, ei〉 =

m−1∑
i=1

K
(
Πim

)
,

where Πim denotes the 2-plane in TpM spanned by the ba-
sis vectors ei and em.
Averaging over all orthonormal bases with em = X (that
is, over the orthogonal group Om−1 acting on the subspace
normal to X), we see that the Ricci curvature [DE: Ricci-
Krümmung] at p in direction X,

Ric(X, X) = (m − 1) ave
Π3X

K(Π),

is (m − 1 times) the average sectional curvature of all 2-
planes in TpM that contain X.
For m = 3 (but not for m > 3) the Ricci curvature at p
determines all the sectional curvatures at p. (To under-
stand this, note that a 2-plane in TpM can be represented
by its normal vector, using the Hodge star isomorphism
Λ2TpM � TpM. Thus we can view the sectional curva-
tures as a quadratic form S on TpM; we can pick an or-
thonormal basis which diagonalizes S as diag(a, b, c) ; the
Ricci curvature R(X, X) is the average of S over the great
circle orthogonal to X and is thus diagonalized in the same
basis.)
We say that M has constant Ricci curvature [DE: konstante
Ricci-Krümmung] λ at p if Ric(X, X) = λ independent of
the unit vector X ∈ TpM, or equivalently if Ric = λg
(meaning Ric(X,Y) = λg(X,Y) for all X,Y , or in compo-
nents Rici j = λgi j).
A theorem of Schur (related to the one we proved about
sectional curvature) says that if Mm is a connected mani-
fold of dimension m ≥ 3 that has constant Ricci curvature
at each point p ∈ M, then λ is independent of p; that is,
M has globally constant Ricci curvature Ric = λg. Such a
manifold is called an Einstein manifold [DE: Einsteinman-
nigfaltigkeit] because of the similarity of this equation to
Einstein’s field equation in general relativity.
Many celebrated theorems in Riemannian geometry deal
with manifolds of bounded Ricci curvature. We mention a
few of these.

Theorem C11.1 (Myers’ Theorem, 1941). If Mm is a com-
plete, connected manifold with Ricci curvature Ric ≥ m−1

r2

then M is compact and diam(M) ≤ πr. Equality holds only
for a round sphere of radius r.

We will prove this theorem later. It is sometimes called
the Bonnet–Myers theorem, since the first result in this di-
rection is due to Bonnet in 1855: a closed convex surface
in R3 with Gauss curvature K ≥ 1/r2 has diameter at most
πr.
As a corollary, we conclude that any compact manifold
of positive Ricci curvature has finite fundamental group
(since the diameter bound applies to the universal covering
as well).
Now let Mm

K denote the m-dimensional (simply connected)
model space of constant sectional curvature K, that is, an
appropriately scaled version of the sphere, Euclidean space
or hyperbolic space. Then Mm

K has constant Ricci curvature
Ric ≡ (m − 1)K. We let Vm

K (r) denote the volume of a
geodesic ball of radius r in Mm

K .

Theorem C11.2 (Bishop–Gromov Inequality, 1963). If
Mm is complete with Ricci curvature Ric ≥ (m − 1)K, then
for any p ∈ M,

r 7→
vol(Br(p))

Vm
K (r)

is a non-increasing function of r ∈ (0,∞). In particular,
since this ratio limits to 1 as r → 0, it is always less than 1:
balls in M are no larger than balls in the model space MK .
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A geodesic line in M means a geodesic γ : R → M such
that every subarc is length minimizing: d

(
γ(a), γ(b)

)
= |b−

a|. (For example, in Euclidean or hyperbolic space, every
geodesic is a geodesic line. By contrast, on the paraboloid
z = x2 + y2 in R3, the intesection with the plane y = 0 is an
embedded geodesic γ : R→ M but not a geodesic line.)

Theorem C11.3 (Cheeger–Gromoll Splitting Theorem,
1971). If M is complete with Ric ≥ 0 and M contains a
geodesic line, then M is isometric to a product N × R.

Note that all these theorems involve lower bounds on the
Ricci curvature. Unlike in dimension 2, where the sphere
(by Gauss–Bonnet) has no metric of negative curvature, it
turns out that in higher dimensions, upper bounds on the
Ricci curvature place no constraints on the topology of M:

Theorem C11.4 (Lohkamp, 1994). Any manifold Mm of
dimension m ≥ 3 admits a metric of negative Ricci curva-
ture Ric < 0.

The Ricci flow ∂gi j/∂t = −2 Rici j is a nonlinear heat flow
of Riemannian manifolds which tries to smooth out the
Ricci curvature. Negatively curved parts of the manifold
expand, while positively curved parts shrink. For an Ein-
stein manifold, the flow is just a homothety.
For a surface parametrized conformally with gi j = e2ϕδi j,
one can show that Rici j = −∆gϕ δi j so the Ricci flow be-
comes ∂tϕ = ∆gϕ. If ϕ were just a real-valued function on
a surface with fixed metric, this would be the linear heat
flow on the surface, using the intrinsic Laplace–Beltrami
operator ∆g. But here the nonlinearity comes from the fact
the metric g, and thus the Laplace–Beltrami operator ∆g,
is varying in time depending on ϕ.
Richard Hamilton had the idea of proving Thurston’s ge-
ometrization conjecture using Ricci flow. Recall that one
version of the classical uniformization theorem for sur-
faces says that any surface admits a metric of constant cur-
vature and thus is a quotient of the sphere, euclidean space
or hyperbolic space. Thurston’s geometrization conjecture
is an analog for 3-manifolds, saying that once a 3-manifold
has been decomposed in a standard topological way (the
so-called JSJ-decomposition along tori within each prime
summand) each piece will admit one of the following eight
standard homogeneous metrics:

S3, E3, H3, S2 × R, H2 × R, S̃L2R, Nil, Solv.

Although the latter cases initially seem mysterious, it was
easy to show that they correspond to Seifert fibered spaces,
which are relatively easy to classify, as well as (in the case
of Solv) to mapping tori of Anosov maps. The most in-
teresting, still open questions concern the classification of
hyperbolic 3-manifolds, which form the largest class.
It is not hard to show that a geometric manifold with finite
fundamental group has to be of spherical type, that is, a
finite quotient of S3. In particular, Thurston’s geometriza-
tion conjecture implies the much older Poincaré conjec-
ture, that any simply connected 3-manifold is a 3-sphere.
Hamilton proved short-time existence of the Ricci flow
starting with any compact Mm, but noted that the flow can

develop singularities. He proved that starting with a man-
ifold M3 with Ric > 0, the renormalized flow (keeping
volume constant) converges to a spherical metric of con-
stant sectional curvature. (The non-renormalized flow will
shrink such an M to a point in finite time.)
Famously, Grigory Perel′man (2003) figured out a way
to do surgery in M3 and continue the flow after a singu-
larity. Using this he completed Hamilton’s program to
prove Thurston’s geometrization conjecture. Perel′man’s
preprints were a bit sketchy, but had all the right ideas, and
various teams had completed full expositions of the proof
by 2006. Perel′man was offered a Fields Medal and a Clay
Millennium Prize of a million dollars, but refused both.

2025 Janyary 20: End of Lecture 25

C12. Variation of energy

Suppose γ : [a, b]→ M is a smooth curve from γ(a) = p to
γ(b) = q in a Riemannian manifold M. We want to under-
stand when a geodesic from p to q is length-minimizing, at
least locally among nearby curves from p to q. Technically
it turns out to be easier to replace the length functional with
Dirichlet energy.

Definition C12.1. The (Dirichlet) energy of the curve γ is

E(γ) :=
1
2

∫
|γ′|2 ds =

1
2

∫ 〈
γ′, γ′

〉
ds.

Note that by the Cauchy–Schwarz inequality,(
len(γ)

)2
=

(∫
|γ′| ds

)2

≤

(∫
12 ds

) (∫
|γ′|2 ds

)
= 2(b − a) E(γ).

Equality holds exactly when |γ′| is constant.
Thus γ minimizes energy (among curves from p to q) if
and only if γ minimizes length and has constant speed. Al-
though we are initially interested in length, we consider
instead how energy changes as we vary the curve γ, since
the formulas are simpler and the minimizers are uniquely
parametrized.

Definition C12.2. A variation [DE: Variation] of γ is a
smooth map ϕ : [a, b]× (−ε, ε)→ M such that, thinking of
ϕ as a one-parameter family of curves γt(s) := ϕ(s, t), we
have γ0 = γ.

For the derivatives of ϕ we write ϕs := Dϕ(∂s) and ϕt :=
Dϕ(∂t). In particular, ϕs(s, t) = γ′t (s) is the velocity vector
along the curve γt, and ϕt(s, t) can be called the variation
field along γt. Along the intial curve γ (that is, for t = 0)
we have

ϕs(s, 0) = γ′(s), ϕt(s, 0) =: V(s) = Vγ(s),

defining the variation field [DE: Variationsfeld] V along γ.
The following lemma, essentially equivalent to the fact
that coordinate vector fields commute, could be expressed
more precisely in terms of the pullback of the Levi-Civita
connection on M via ϕ to the rectangle [a, b] × (−ε, ε).
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Lemma C12.3. We have ∇ϕsϕt = ∇ϕtϕs.

Proof. Since [∂s, ∂t] = 0 on [a, b] × (−ε, ε), we have

0 = Dϕ
(
[∂s, ∂t]

)
=

[
Dϕ(∂s),Dϕ(∂t)

]
= [ϕs, ϕt] = ∇ϕsϕt − ∇ϕtϕs,

where at the end we use the fact that the connection is
torsion-free. �

Theorem C12.4 (First Variation of Energy). Given any
variation of a curve γ with variation field V, the first vari-
ation of energy is

δV E(γ) :=
d
dt

∣∣∣∣∣
t=0

E(γt) =
〈
V, γ′

〉∣∣∣b
a −

∫ b

a

〈
V,∇γ′γ

〉
ds.

Proof. For any t, we have

d
dt

E(γt) =
1
2

∫
∂

∂t
〈
ϕs, ϕs

〉
ds

=

∫ 〈
∇ϕtϕs, ϕs

〉
ds =

∫ 〈
∇ϕsϕt, ϕs

〉
ds

=

∫
∂

∂s
〈
ϕt, ϕs

〉
−

〈
ϕt,∇ϕsϕs

〉
ds

=
〈
ϕt, ϕs

〉 ∣∣∣∣∣b
a
−

∫ b

a

〈
ϕt,∇ϕsϕs

〉
ds.

At t = 0 we have ϕt = V and ϕs = γ′, giving the desired
formula. �

Note that if the initial curve γ is parametrized at unit speed,
then this same formula gives δV len(γ), because then the
initial t-derivative of |γ′| is the same as that of |γ′|2/2.
Compare the formula we had last semester (in section
I.A4) for the first variation of length.
As a corollary, we see that γ is a critical point of E under
variations fixing the endpoints (that is, with Vp = 0 = Vq)
if and only if ∇γ′γ′ = 0, that is, if and only if γ is a
geodesic.
What about the second derivative of energy along this vari-
ation? Using the formula from the last proof, we have
d2

dt2 E(γt) =
∫

∂
∂t
〈
∇ϕsϕt, ϕs

〉
ds. The integrand here is

∂

∂t
〈
∇ϕsϕt, ϕs

〉
=

〈
∇ϕsϕt,∇ϕtϕs

〉
+

〈
∇ϕt∇ϕsϕt, ϕs

〉
=

∣∣∣∇ϕsϕt

∣∣∣2 +
〈
R(ϕt, ϕs)ϕt, ϕs

〉
+

〈
∇ϕs∇ϕtϕt, ϕs

〉
=

∣∣∣∇ϕsϕt

∣∣∣2 − 〈
R(ϕt, ϕs)ϕs, ϕt

〉
+
∂

∂s
〈
∇ϕtϕt, ϕs

〉
−

〈
∇ϕtϕt,∇ϕsϕs

〉
.

Thus at t = 0, where ϕt = V and ϕs = γ′, we get

δ2
V,V E(γ) :=

d2

dt2

∣∣∣∣∣∣
t=0

E(γt)

=
〈
∇Vϕt, γ

′〉∣∣∣∣∣b
a
−

∫ b

a

〈
∇Vϕt,∇γ′γ

′〉 ds

+

∫ b

a

∣∣∣∇′γV
∣∣∣2 − 〈

R(V, γ′)γ′,V
〉

ds.

This formula simplifies when γ is a geodesic (∇γ′γ′ = 0)
and V vanishes at the endpoints.

Theorem C12.5. The second variation of energy for a
geodesic γ with fixed endpoints is

δ2
V,V E(γ) =

∫ b

a

∣∣∣∇γ′V ∣∣∣2 − 〈
R(V, γ′)γ′,V

〉
ds.

Corollary C12.6. If M has nonpositive sectional curva-
ture K ≤ 0, then for any nonzero V we have δ2

V,V E(γ) > 0.
Thus any geodesic (no matter how long) is strictly locally
minimizing (among nearby curves with the same fixed end-
points).

Consider for instance a helical geodesic wrapping several
times around a cylinder. It is clearly not the path of least
length between its endpoints, but it is locally minimizing:
no variation can reduce its length.

Corollary C12.7. Integrating by parts, we can rewrite the
second variation formula as

δ2
V,V E(γ) = −

∫ b

a

〈
R(V, γ′)γ′ + ∇γ′∇γ′V, V

〉
ds.

Definition C12.8. If γ is a geodesic in M, then a variation
vector field V along γ is called a Jacobi field [DE: Jacob-
ifeld] if

R(V, γ′)γ′ + ∇γ′∇γ′V = 0.

Note that this is a linear second order ODE for V along γ.
Thus there is a unique Jacobi field with any given initial
values Vp and

(
∇γ′V

)
p at p. The linear space of Jacobi

fields along γ has dimension 2m.

Proposition C12.9. Suppose ϕ is a variation of γ through
geodesics, meaning that γt is a geodesic for each t. (We
don’t require fixed endpoints.) Then the variation field V =

ϕt along γ is a Jacobi field.

Proof. We have

0 = ∇ϕt

(
∇ϕsϕs

)
= ∇ϕs

(
∇ϕtϕs

)
+ R(ϕt, ϕs)ϕs

= ∇ϕs

(
∇ϕsϕt

)
+ R(ϕt, ϕs)ϕs.

At t = 0 this gives 0 = ∇γ′∇γ′V + R(V, γ′)γ′. �

Note that for any constants c, d ∈ R, the field V = (cs+d)γ′

is a (tangential) Jacobi field along a geodesic γ, corre-
sponding to varying the constant-speed parametrization
of γ. (Such a field vanishes at no more than one points
s = −d/c.) Most interesting is the complementary family
of normal Jacobi fields, which has dimension 2m − 2.

Definition C12.10. If γ is a geodesic then a pair of points
p , q on γ are called conjugate points [DE: konjugierte
Punkte] if there is a nontrivial Jacobi field along γ vanish-
ing at p and q.

Note that the Jacobi field vanishing at both p and q is nec-
essarily a normal Jacobi field. It can be integrated to give
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a one-parameter family of geodesics starting at p (in dif-
ferent directions), all of the same length and ending almost
at q. (One could say they end at some point q + O(t2).) It is
not hard then to show that no piece of the initial geodesic
γ that strictly includes the arc pq can be locally minimiz-
ing. (Roughly speaking, we could replace the subarc pq
by a different nearby geodesic, giving a curve of the same
length with a corner at p; by rounding this corner we can
reduce length to first order in t.)

2025 January 21: End of Lecture 26

If M has constant sectional curvature K and γ is a unit
speed geodesic, then for a normal field V along γ we have
R(V, γ′)γ′ = KV so the equation for a normal Jacobi field
becomes ∇γ′∇γ′V = −KV . For any unit vector W ∈ TpM
normal to γ′(0) we extend it to a parallel field along γ.
Then there is an explicit formula for the Jacobi field with
initial conditions V(0) = 0, ∇γ′V(0) = W in terms of K:

J(s) =


sin

(
s
√

K
)
W(s)

/ √
K if K > 0,

sW(s) if K = 0,
sinh

(
s
√
−K

)
W(s)

/ √
−K if K < 0.

On a round sphere of radius r (with K = 1/r2) antipodal
points ±p are conjugate points, and there is indeed a one-
parameter family of different geodesics connecting them,
obtained by rotating around the axis ±p. The Jacobi field
is the velocity field of this rotation.
Let γ be a unit-speed geodesic in M starting at p = γ(0).
We know there is an m-dimensional family of normal Ja-
cobi fields V along γ vanishing at p; they are parametrized
by ∇γ′V ∈ TpM. The normal Jacobi fields vanishing
at p have a nice interpretation in terms of the expo-
nential map expp : TpM → M, since geodesics through
p are just the images of lines through the origin. Let
X,Y ∈ TpM be orthogonal unit vectors. Then X(t) =

X cos t + Y sin t is a great circle in the unit sphere in TpM
and γt(s) = expp(sX(t)) gives a one-parameter family of
unit-speed geodesics. The initial variation along γ = γ0
is V(s) = DsX expp(sY). It is of course a Jacobi field
along γ, namely the one vanishing at s = 0 and with
∇γ′V(0) = D0 expp(Y) = Y there.
Now to say that q = γ(s) = expp(sX) is conjugate to
p = γ(0) means that one of these Jacobi fields vanishes
at q. That is exactly equivalent to saying that DsX expp is
not injective. Conjugate points are places where the expo-
nential map fails to be an immersion.
We are now ready to sketch a proof of Myers’ Theorem,
which we mentioned before.

Theorem C12.11. Assume Mm is a complete, connected
manifold with Ricci curvature Ric ≥ m − 1. Then M is
compact with diameter diam M ≤ π.

Proof. Fix points p, q ∈ M. By the Hopf–Rinow theorem,
the completeness of M implies there exists a minimizing
unit-speed geodesic γ : [0, L] → M from p to q, where
L = d(p, q). We must show L ≤ π.
Choose an orthonormal basis E1, . . . , Em = γ′(0) for TpM
and each extend each Ek to a parallel field along γ. Since γ

is a geodesic, we have Em(s) = γ′(s) for all s. Now define
variation vector fields Vk(s) = sin πs

L Ek along γ, noting
that these vanish at p and q. We compute

∇γ′Vk =
π

L
cos

πs
L

Ek, ∇γ′∇γ′Vk = −
π2

L2 sin
πs
L

Ek,

so that the second variation of energy in direction Vk is

δ2
Vk ,Vk

E(γ) = −

∫ L

0
sin2 πs

L
〈
R(Ek, Em)Em, Ek

〉
ds

+

∫ L

0

π2

L2 sin2 πs
L

ds

=

∫ L

0

(
π2

L2 − K(Πkm)
)

sin2 πs
L

ds,

where Πkm is the two-plane spanned by Ek and Em. Since γ
is minimizing, this second variation must be nonnegative.
Summing over k = 1, . . . ,m − 1, we get∫ L

0

( (m − 1)π2

L2 − Ric(Em, Em)
)

sin2 πs
L

ds ≥ 0.

Thus the integrand must be nonnegative somewhere,
meaning (m − 1)π2/L2 ≥ Ric(Em, Em) ≥ m − 1 there. That
is, π2 ≥ L2 as desired.
A complete manifold M of finite diameter d is automati-
cally compact, since M is the image of the compact ball
Bd(0) under the exponential map expp, for any p ∈ M. �

2025 January 27: End of Lecture 27

C13. Scalar curvature

The Ricci curvature, being a symmetric bilinear form on
TpM, is a much simpler object than the Riemmian curva-
ture, but sometimes it is useful to consider a further sim-
plification.

Definition C13.1. The scalar curvature [DE: Skalarkrüm-
mung] S ∈ C∞(M) of a Riemannian manifold (M, g) is the
trace of the Ricci curvature with respect to g:

S = trg Ric =
∑

i

Rici
i =

∑
i j

gi j Rici j,

where Ric j
i =

∑
k g jk Ricik. If {Ei} is locally an orthonor-

mal frame, then S =
∑

i Ric(Ei, Ei); we conclude that
S (p) is m times the average Ricci curvature Ric(E, E) over
all unit vectors E ∈ TpM. In turn, this means S (p) is
m(m − 1) times the average sectional curvature of all two-
planes in TpM.

The Yamabe problem asks, given a compact Riemannian
manifold (Mm, g0) of dimension m ≥ 3, whether there is
a conformally equivalent metric g = e2ϕg0 with constant
scalar curvature. Through work of Trudinger, Aubin and
Schoen, this is known to be true. The idea is that metrics
of constant scalar curvature are the critical points for the
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total scalar curvature
∫

M S d vol under volume-preserving
conformal changes of metric. (Only Einstein metrics of
constant Ricci curvature are critical points under arbitrary
volume-preserving changes.)
It is known that any manifold of dimension m ≥ 3 admits
a metric of constant negative scalar curvature. (This con-
trasts to the case of surfaces, where this fails for the sphere
and the torus.) There are still interesting open questions
about which manifolds admit metrics of constant positive
scalar curvature.
To further indicate the geometric meaning of Ricci and
scalar curvature, we list a few facts about computations
in geodesic normal coordinates around a point p ∈ M.
The metric is

gi j(x) = δi j +
1
3

∑
k,`

Rik` jxk x` + O(|x|3).

The volume factor is√
det gi j(x) = 1 −

1
6

∑
k,`

Rick` xk x` + O(|x|3).

So along a geodesic γ(t) = expp(tV) with |V | = 1 we have√
det gi j(γ(t)) = 1 −

Ric(V,V)
6

t2 + O(t3).

If αm denotes the volume of the unit ball in Rm, then the
volume of a geodesic ball of radius r is given by

vol
(
Br(p)

)
= αmrm

(
1 −

S (p)
6(m + 2)

r2 + O(r3)
)
.

Similarly, for the (m − 1)-dimensional area of the sphere,

area
(
S r(p)

)
= mαmrm−1

(
1 −

S (p)
6m

r2 + O(r3)
)
.

In particular for a surface M2, we have α2 = π and S = 2K,
so the circumference of a geodesic circle of radius r is

2πr −
π

3
K(p)r3 + O(r4),

giving another intrinsic interpretation of the Gauss curva-
ture K(p).

C14. Moving frames

So far, we have always used the coordinate frame {∂i} as
the basis for each TpM. But in fact we could choose any
frame {Ei} over some open U ⊂ M and use it to express the
components not only of tangent vectors but also of differ-
ential forms and other tensors. One difference here is that
the fields Ei do not necessarily commute with each other;
in general [Ei, E j] , 0.
Of course, pointwise there is a dual basis {θi} for T ∗pM.
Letting p vary, these give a dual frame {θi} of one-forms
θi ∈ Ω1(U). The defining property of dual bases is of
course θi(E j) = δi

j.

A connection ∇ on T M can be expressed via Christoffel
symbols with respect to the frame {Ei}:

∇Ei E j =
∑

k

Γk
i jEk, Γk

i j = θk(∇Ei E j
)
.

We now define the connection one-forms

θk
j :=

∑
`

Γk
` jθ

`, θk
j(Ei) = Γk

i j = θk(∇Ei E j
)
.

Then by linearity, for any X we have ∇XE j =
∑

k θ
k
j(X)Ek.

This is often abbreviated as an equation for vector-valued
one-forms: ∇E j =

∑
θk

j Ek. The connection ∇ is deter-
mined by the matrix of connection forms θk

j .

Now we want to see how to express the symmetry of ∇;
since the vector fields Ei do not commute, this is no longer
equivalent to symmetry Γk

i j = Γk
ji of the Christoffel sym-

bols.
First consider the exterior derivative dθk. By the general
formula for the exterior derivative of a one-form, we have

dθk(Ei, E j) = Eiθ
k(E j) − E jθ

k(Ei) − θk([Ei, E j]
)
.

But here θk(E j) = δk
j is constant, so its directional deriva-

tive vanishes. We are left with only the last term:

dθk(Ei, E j) = −θk[Ei, E j].

Now compute

θk(∇E j Ei − ∇Ei E j
)

= θk
i (E j) − θk

j(Ei)

=
∑
`

θ`(Ei)θk
`(E j) −

∑
`

θ`(E j)θk
`(Ei)

=
(∑

` θ
` ∧ θk

`

)
(Ei, E j).

Recalling the definition of the torsion T∇ of the connection,
we find that

θk(T∇(Ei, E j)
)

= dθk(Ei, E j) −
(∑

` θ
` ∧ θk

`

)
(Ei, E j).

Thus the condition of vanishing torsion is exactly that
dθk =

∑
` θ

` ∧ θk
` for all k.

Now suppose we have a Riemannian metric given by gi j =

g(Ei, E j). The condition for ∇ to be a metric connection is
then

dgi j(Ek) = Ekgi j

= g
(
∇Ek Ei, E j

)
+ g

(
Ei,∇Ek E j

)
= g

(∑
θ`i (Ek)E`, E j

)
+ g

(∑
θ`j(Ek)E`, Ei

)
=

∑
`

(
g j`θ

`
i (Ek) + gi`θ

`
j(Ek)

)
.

If we use g to “lower the indices” to give a new matrix
of connection one-forms θi j :=

∑
k gk jθ

k
i , then the metric

compatibility condition can be expressed simply as dgi j =

θi j + θ ji.

2025 January 28: End of Lecture 28
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Now we turn to the Riemannian curvature operator. Its
components are given by R(Ek, E`)Ei =:

∑
R j

i k`E j. We
define a matrix of two-forms Ω

j
i , called the curvature two-

forms, by

Ω
j
i =

∑
k<l

R j
i k`θ

k ∧ θ` = 1
2

∑
k,l

R j
i k`θ

k ∧ θ`.

Then
∑

j Ω
j
i (Ek, E`)E j =

∑
R j

i k`E j = R(Ek, E`)Ei, or ex-
tending by bilinearity,∑

j

Ω
j
i (X,Y)E j = R(X,Y)Ei.

This simply means that Ω
j
i (X,Y) is the matrix for the cur-

vature operator R(X,Y) with respect to the basis {Ei} for
TpM.
Note that we can also lower the indices here, giving

Ωi j =
∑

gk jΩ
k
i =

∑
k<`

Ri jk`θ
k ∧ θ`.

For these two-forms we have the antisymmetry Ω ji =

−Ωi j.

Theorem C14.1. The curvature two-forms can be com-
puted as

Ω
j
i = dθ j

i −
∑

θk
i ∧ θ

j
k.

This is often abbreviated as an equation of matrix-valued
two-forms:

Ω = dθ + θ ∧ θ.

Note that since this is a matrix wedge product, the wedge
product of θ with itself is not necessarily zero.

Proof. The proof is simply a calculation starting with the
definition of the curvature operator:∑

j

Ω
j
i (X,Y)E j

= R(X,Y)Ei = ∇X
(
∇Y Ei

)
− ∇Y

(
∇XEi

)
− ∇[X,Y]Ei

= ∇X

(∑
j θ

j
i (Y)E j

)
− ∇Y

(∑
j θ

j
i (X)E j

)
−

∑
j θ

j
i
(
[X,Y]

)
E j

=
∑

j

(
X
(
θ

j
i (Y)

)
− Y

(
θ

j
i (X)

)
− θ

j
i [X,Y]

)
E j

−
∑

j,k

(
θ

j
i (Y)θk

j(X) − θ j
i (X)θk

j(Y)
)
Ek

=
∑

j

(
dθ j

i (X,Y) −
∑

k
(
θk

i (Y)θ j
k(X) − θk

i (X)θ j
k(Y)

))
E j

=
∑

j

(
dθ j

i (X,Y) −
∑

k
(
θk

i ∧ θ
j
k
)
(X,Y)

)
E j. �

Now we consider a special case, where on a Riemannian
manifold the frame {Ei} we start with is orthonormal at
every point p ∈ M. We change notation: we call this frame

{ei} and the dual coframe of one-forms {ωi}. The condition
that {ei} is orthonormal can be written as gi j = δi j. In terms
of the coframe {ωi} we get g =

∑
ωi ⊗ ωi; up to a sign, the

Riemannian volume form is ω1 ∧ ω2 ∧ · · · ∧ ωm.
Note that starting with any frame (for instance a coordi-
nate frame) over U ⊂ M we can apply the Gram–Schmidt
process to produce an orthonormal frame {ei} over U.
A connection ∇ is given, as before, by a matrix of one-
forms ωi

j such that ωk(∇ei e j
)

= ωk
j(ei). The equations

characterizing the Levi–Civita connection simplify in an
orthonormal frame:

dωi =
∑

j

ω j ∧ ωi
j, ωi

j + ω
j
i = 0.

In particular we see that the metric compatibility simply
says that the matrix of one-forms is skew-symmetric. Note
that with respect to an orthonormal frame, raising and low-
ering indices makes no change, so we often write ωi j = ω

j
i

interchangeably.
The curvature two-forms are given as before by

Ω
j
i = dω j

i −
∑

ωk
i ∧ ω

j
k.

Proposition C14.2. For a suface M2 with an orthonormal
frame {ei}, we have dω2

1 = Ω2
1 = −K ω1 ∧ ω2, where K is

the Gauss curvature.

Proof. We have

Ω2
1 = Ω12 =

∑
k<`

R12k` ω
k ∧ ω` = R1212 ω

1 ∧ ω2,

and K = K
(
Π12

)
=

〈
R(e1, e2)e2, e1

〉
= −R1212.

By the skew-symmetry ω j
i + ωi

j = 0 we see that ω1
1 = 0 =

ω2
2. Thus

∑2
k=1 ω

k
1 ∧ ω

2
k = 0, meaning that the formula for

the curvature two-form simplifies to Ω2
1 = dω2

1. �

Theorem C14.3. Let M be a Riemannian manifold, and
Π ⊂ TpM a two-plane in the tangent space at p ∈ M.
For sufficiently small ε > 0, consider the two-dimensional
submanifold N = expp

(
Π ∩ Bε(0)

)
through p with TpN =

Π ⊂ TpM. Then the sectional curvature K(Π) equals the
Gauss curvature K of N at p.

Proof. Use geodesic normal coordinates around p so that
{∂i} is an orthonormal basis for TpM, with {∂1, ∂2} span-
ning Π. In these coordinates, the submanifold N is given
by x3 = · · · = xm = 0, so the tangent space to N is spanned
by ∂1 and ∂2. Now apply Gram–Schmidt to {∂i} to give an
orthonormal frame {ei}. At p we have ei = ∂i, and along N
we have the frame {e1, e2} for T N. For i = 1, 2 we know
that ei is a linear combination ei = a1

i ∂1 + a2
i ∂2.

The Levi–Civita connection on M is given by connection
one-forms such that ∇Xei =

∑
ω

j
i (X)e j. Recall that in

geodesic normal coordinates we have ∇Xp∂i = 0 at p. Thus
for i = 1, 2,∑

ω
j
i (Xp)e j = ∇Xp ei =

(
Xpa1

i
)
∂1 +

(
Xpa2

i
)
∂2
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is a linear combination of e1 and e2. In particular, this
means that ω j

i (Xp) vanishes when i = 1, 2 and j ≥ 3.
Now consider the pullbacks (or restrictions) of the one-
forms under the inclusion map ι : N ↪→ M. Write ω̃i :=
ι∗ωi, noting that ω̃i = 0 for i > 2, and ω̃ j

i := ι∗ω
j
i . Since

pullback commutes with ∧ and d, we have the equations

ω̃i
j = ω̃

j
i , ∂ω̃i =

∑
ω̃ j ∧ ω̃i

j,

where the sum can be taken over j ∈ {1, 2}. That is, the ω̃i
j

are the connection one-forms for the orthonormal coframe
ω̃i, so by the proposition for surfaces,

dω̃2
1 = −Kω̃1 ∧ ω̃2.

On the other hand, on M, we have

dω2
1 =

∑
ωk

1 ∧ ω
2
k +

∑
k<`

R12k` ω
k ∧ ω`.

Pulling this equation back to N and evaluating at p gives

dω̃2
1 = R1212 ω̃1 ∧ ω̃2 = −K(Π) ω̃1 ∧ ω̃2. �

2025 February 3: End of Lecture 29

C15. Lie Groups

Definition C15.1. A Lie group is a smooth manifold G
which is also a group, such that the group operations g 7→
g−1 and (g, h) 7→ gh are smooth maps.

(It is equivalent to just require the one map (g, h) 7→ gh−1

to be a smooth map G ×G → G.)
Note that a 0-dimensional Lie group is a countable group
with the discrete topology.
If G and H are Lie groups then the product G × H is also
a Lie group: on the product manifold G × H we use the
direct product group structure (g, h)(g′, h′) = (gg′, hh′).
For g ∈ G, the left- and right-translations by g are the dif-
feomorphisms `g : h → gh and rg : h 7→ hg from G to
itself. These are transitive actions of G on itself.
Because manifolds are locally connected, the connected
components of G are the same as its path-components. The
components are diffeomorphic to each other (for instance
by appropriate left-translations). The component G0 con-
taining the identity element e ∈ G is a normal subgroup.
(To check this, recall the image of a connected space un-
der a continuous map is connected. Thus {gh : g, h ∈ G0}

is connected and thus equal to G0; similarly for any g ∈ G,
the conjugate subgroup gG0g−1 is connected and contains e
so equals G0.) The quotient G/G0 is then a discrete group,
a 0-dimensional Lie group.
Examples of Lie groups include (R,+) and thus also
(Rn,+). The group (R∗,×) is disconnected, isomorphic to
(R+,×) × {±1}. Note that the logarithm gives an isomor-
phism (R+,×) → (R,+). The nonzero complex numbers
form a Lie group (C∗,×) and the unit complex numbers

form a subgroup (S1,×), which is isomorphic to (R/Z,+),
the quotient of R by the discrete subgroup Z. (Here the
isomorphism is t 7→ exp(2πit).) For any n the n-torus
T n = S1 × · · · × S1 = Rn/Zn is an example of a compact
connected n-dimensional Lie group.
All the examples in the last paragraph are abelian groups,
which as we will see are particularly trivial examples of
Lie groups. More intersting examples arise as matrix
groups. The general linear group GL(Rn), the open subset
of Rn×n where the determinant does not vanish, is a group
under matrix multiplication. It has many interesting sub-
groups, for instance the orthogonal group O(n) ⊂ GL(Rn)
consisting of matrices A with AT A = I.
Another example is the group Aff(Rn) of all (invertible)
affine transformations of Rn. Since any affine map is a
combination of a translation and a linear map, we can write
Aff(Rn) = Rn o GL(Rn) as a semidirect product. As a
manifold it is the cartesian product, but the group law is
twisted by the natural action of GL(Rn) on Rn. That is,
if (v, A) represents the affine motion x 7→ v + Ax, then the
product of two such elements is (v, A)(w, B) = (v+Aw, AB)
(rather than (v+w, AB) which would be the direct product).
Similarly, the group of euclidean isometries of Rn is the
semidirect product Euc(Rn) = Rn o O(n).

Definition C15.2. A vector field X on a Lie group G is
called left-invariant if for every g ∈ G it is `g-related to
itself: (`g)∗X = X. We let g denote the set of all left-
invariant vector fields.

Proposition C15.3. The set g of left-invariant vector fields
is a vector space. The map X 7→ Xe is an isomorphism
g→ TeG to the tangent space at the identity. Thus dim g =

dim TeG = dim G. The Lie bracket of two left-invariant
vector fields is left-invariant, so g is a Lie algebra; we call
it the Lie algebra of G.

We leave the proof as a straightforward exercise, simply
noting that the inverse isomorphism TeG → g is given by
extending any Xe ∈ TeG to the vector field Xg := De`g(Xe)
and checking that this is left-invariant.
Now suppose X ∈ g is a left-invariant vector field. How
can we understand the flow and integral curves of X? By
definition, the integral curve through e ∈ G is written

t 7→ γe(t) =: exp(tXe).

(This exponential function exp: TeG → G is not the Rie-
mannian exponential function: it is defined via the group
structure, independent of any Riemannian metric.) By left-
invariance, the integral curve through any g ∈ G is then
t 7→ γg(t) = g exp(tXe). In particular, if g = exp(sXe), we
see that

exp
(
(s + t)Xe

)
= exp(sXe) exp(tXe).

We conclude that the integral curve exists for all time.
What about the time-t flow θt of X? We have

θt(g) = γg(t) = g exp(tXe),

meaning that θt = rexp(tXe) is right-translation by exp(tXe).
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Of course, the exponential map only sees the identity com-
ponent G0 of G. But even if G = G0 is connected, the ex-
ponential map is not always surjective. (If G is compact it
is surjective.) As an example we can take G = GL(Rn)+ =

GL(Rn)0 or G = SL(Rn). The matrix A = diag(−2,−1/2)
is not the square of any real matrix, so it can’t be in the
image of the exponential map.
Now let us consider the case of the matrix group G =

GL(Rn). Here we can identify the Lie algebra gln = gl(Rn)
with the tangent space TeG = TeR

n×n � Rn×n, which is just
the space of all n × n matrices. The exponential map here
is the matrix exponential, defined by the power series

exp(Xe) = I + Xe +
X2

e

2
+

X3
e

3!
+ . . . =

∑ Xk
e

k!
.

To check this we simply note that (as in the case of the real
exponential function) this power series solves the ODE

d
dt

(
exp(tXe)

)
= exp(tXe)Xe = Xexp tXe .

(This is where the name “exponential map” comes from;
the Riemannian version is named by analogy, just since it
is also a map from a tangent space to the manifold.)
Now we want to understand the Lie bracket of left-
invariant vector fields. Recall that we identify X ∈ gln
with Xe ∈ TeGL(Rn) � Rn×n � End(Rn). We recall that
the commutator [A, B] = AB − BA gives a Lie bracket on
the space of endomorphisms of any vector space. Here we
claim that the Lie bracket of left-invariant vector fields is
this commutator: [X,Y]e = [Xe,Ye]. We will do the com-
putation in two ways just for practice.
Note first that since G = GL(Rn) is an open subspace of
Rn×n, its tangent space at any point can be identified with
this space of n × n matrices: TAG = TAR

n×n = Rn×n. We
also have a global coordinate system on G where xi j gives
the i jth entry of the matrix: xi j(A) = Ai j. Since this is
(the restriction to G of) a linear function Rn×n → R its
derivative at any point is the same linear function: if XA is
a tangent vector at A ∈ G, we have XA(xi j) = dxi j(XA) =

(XA)i j.
Similarly, each left translation `A : B 7→ AB is (the restric-
tion of) a linear map on Rn×n, so its derivative is the same
map: De`A : TeG → TAG is X 7→ AX. Thus the left-
invariant vector field with value Xe at the identity matrix
e is given by XA = AXe for A ∈ G.
Now if X and Y are left-invariant vector fields, then [X,Y]
is also left-invariant and thus determined by its value at e.
Using the definition of Lie bracket in terms of the opera-
tion of vector fields on smooth functions, we can find the
entries of the matrix [X,Y]e by differentiating the functions
xi j:

[X,Y]exi j = Xe(Y xi j) − Ye(Xxi j).

But the function Y xi j is the linear function A 7→ (AYe)i j
so once more its derivative is the same function. Thus
Xe(Y xi j) = (XeYe)i j. Of course the same holds swapping
X and Y so we find(

[X,Y]e
)
i j = (XeYe − YeXe)i j = [Xe,Ye]i j.

Since this holds for all i, j we have as desired [X,Y]e =

[Xe,Ye]. Here of course the bracket on the left is the Lie
bracket of vector fields, while on the right we have the
commutator of matrices.
Alternatively, recall that the Lie bracket equals the Lie de-
riative: [X,Y] = LXY . Using our formula for the flow θt
of X, namely θt(A) = A exp(tXe), we have

(LXY)e =
d
dt

∣∣∣∣∣
t=0

(θ−t)∗Yθt(e) =
d
dt

∣∣∣∣∣
t=0

(θ−t)∗
(
exp(tXe)Ye

)
=

d
dt

∣∣∣∣∣
t=0

(
exp(tXe) Ye exp(−tXe)

)
=

d
dt

∣∣∣∣∣
t=0

(
exp(tXe)

)
Ye exp(0)

+ exp(0) Ye
d
dt

∣∣∣∣∣
t=0

(
exp(−tXe)

)
= XeYe − YeXe = [Xe,Ye].

2025 February 4: End of Lecture 30

Definition C15.4. A Lie group homomorphism ϕ : G → H
is a smooth map that is a group homomorphism, meaning
in particular that ϕ(gg′) = ϕ(g)ϕ(g′). A Lie algebra ho-
momorphism ϕ : g → h is a linear map that preserves Lie
bracket: ϕ[X,Y] = [ϕX, ϕY].

Proposition C15.5. Any Lie group homomorphism
ϕ : G → H has constant rank and induces a Lie algebra
homomorphism ϕ∗ : g→ h.

Proof. The fact that ϕ : G → H is a group homomorphism
means that ϕ(gg′) = ϕ(g)ϕ(g′), which can be written as
ϕ ◦ `g = `ϕ(g) ◦ ϕ. Taking differentials at e ∈ G gives

Dgϕ ◦ De`g = De`ϕ(g) ◦ Deϕ.

Since the derivatives of left translations are isomorphisms,
it is clear that ϕ has constant rank.
Now if we identify the Lie algebras with the tangent spaces
at e, it is clear that the induced map ϕ∗ : g → h should be
Deϕ : TeG → TeH. That is, if X a left-invariant vector field
on G, we define Y = ϕ∗(X) to be the left-invariant vector
field on H with Ye = Deϕ(Xe). Then Y is ϕ-related to X, as
follows from the equation above:

Dgϕ(Xg) = Dgϕ ◦ De`g(Xe) = De`ϕ(g) ◦ Deϕ(Xe)
= De`ϕ(g)(Ye) = Yϕ(g).

To check ϕ∗ is a Lie algebra homomorphism, suppose
X,Y ∈ g are left-invariant fields on G. Since ϕ∗X and
ϕ∗Y are ϕ-related to X and Y , respectively, we know that
[ϕ∗X, ϕ∗Y] is ϕ-related to [X,Y]. Since it is also left-
invariant, it follows that ϕ∗[X,Y] = [ϕ∗X, ϕ∗Y], �

Note that this construction is functorial in the sense that
the identity map on G induces the identity on g and if we
have ϕ : G → H and ψ : H → K, then (ψ ◦ ϕ)∗ = ψ∗ ◦
ϕ∗. In particular, an isomorphism of Lie groups induces an
isomorphism of Lie algebras.
Now suppose a homomorphism ι : H ↪→ G is injective.
Since ι has constant rank, the rank theorem implies that
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ι∗ : h → g is also injective. Thus ι is an injective immer-
sion. We would like to call ι(H) a Lie subgroup of G, but
it isn’t always an embedded submanifold. When we first
defined submanifolds, we gave the example of a line of
irrational slope which is dense in the torus T 2 = R2/Z2.
When dealing with Lie groups, we call examples like this
immersed submanifolds. The manifold topology on ι(H),
defined via the map ι, is finer than the subspace topology
in inherits from G.

Theorem C15.6. If ι(H) is closed as a subset of G, then it
is an embedded submanifold.

We will not take the time to prove this theorem. Note
that it is not true in general that an injective immersion
with closed image is an embedding: we had an example of
an injective immersion of (0, 1) into R2 whose image is a
compact figure-8 curve. But for Lie groups it means that
subgroups which are embedded submanifolds are usually
just called closed subgroups.
On a Lie group G we can also dually consider left-invariant
one-forms; as for vector fields, any cotangent vector at
e ∈ G can be extended uniquely to give a left-invariant
one-form. We claim that the Lie bracket of left-invariant
vector fields corresponds to the exterior derivative of left-
invariant one-forms. Suppose X and Y are left-invariant
vector fields and θ is a left-invariant one-form. Since θ(X)
is a constant function we see Yθ(X) = 0 and it follows that

dθ(X,Y) = −θ[X,Y].

Suppose we choose a basis for TeG and extend it to a frame
{E1, . . . , En} of left-invariant vector fields. The Lie algebra
structure can be expressed in terms of the so-called struc-
ture constants ck

i j defined by

[Ei, E j] =
∑

ck
i jEk.

The antisymmetry and Jacobi identity become the relations

ck
i j + ck

ji = 0,
∑

m

(
cm

i jc
`
mk + cm

jkc`mi + cm
kic

`
m j

)
= 0.

From the frame {Ei} we get a dual frame {θ1, . . . , θn} of
left-invariant one-forms. Their exterior derivatives satisfy
dθi(E j, Ek) = −ci

jk or equivalently

dθi = −
∑
j<k

ci
jkθ

j ∧ θk = − 1
2

∑
j,k

ci
jkθ

j ∧ θk.

More abstractly we can combine all the θis to define a left-
invariant g-valued one-form ω. For Xg ∈ TgG we sim-
ply have ωg(Xg) = (`g−1 )∗Xg. If G is a matrix group this
is often written ω = g−1 dg, thinking of g = (gi j) as the
embedding G ↪→ GL(Rn) ⊂ Rn×n. For left-invariant vec-
tor fields X,Y , we have ω

(
[X,Y]

)
=

[
ω(X), ω(Y)

]
, so that

dω(X,Y) +
[
ω(X), ω(Y)

]
= 0.

Left-translation on G can be thought of as defining a con-
nection on the tangent bundle TG, where a left-invariant
vector field is parallel along an arbitrary curve. This con-
nection has trivial holonomy since parallel transport is in-
dependent of path; that is, its curvature vanishes, so we say
it is a flat connection.

The Lie bracket is then the torsion T of this connection:
if X and Y are tangent vectors, extended to left-invariant
vector fields, then since the covariant derivatives vanish
we simply have T (X,Y) = −[X,Y].
Now suppose we put an inner product on TeG, for instance
by declaring that a chosen basis {Ei} is orthonormal. This
can be extended uniquely to give a left-invariant Rieman-
nian metric 〈·, ·〉 on G. The flat connection described above
is then metric compatible, but since its torsion does not
vanish it isn’t the Levi-Civita connection. To understand
the Levi-Civita connection, we can use the Koszul formula

2 〈∇XY,Z〉 = X 〈Y,Z〉 + Y 〈X,Z〉 − Z 〈X,Y〉
+

〈
[X,Y],Z

〉
−

〈
[X,Z],Y

〉
−

〈
[Y,Z], X

〉
,

where for left-invariant vector fields the first three terms
vanish.
Given a left-invariant metric, let {Ei} be a left-invariant
orthonormal frame and let ci jk be the structure constants.
(Note that with respect to this orthonormal frame, we can
freely raise and lower indices.) Then the Koszul formula
shows how the Christoffel symbols are given as linear com-
binations 2Γi jk = ci jk − c jki − cki j, since by definition
Γi jk =

〈
∇Ei E j, Ek

〉
and ci jk =

〈
[Ei, E j], Ek

〉
.

It follow that the components of the Riemann curvature
tensor are then quadratic combinations of these structure
constants. (The terms involving derivatives of the Christof-
fel symbols vanish, since these Γi jk are constants.)
The nicest metrics are those which are bi-invariant, mean-
ing left- and right-invariant. We can ask when a left-
invariant metric 〈·, ·〉 is bi-invariant. One way to write this
condition is that 〈[X,Y],Z〉 = 〈X, [Y,Z]〉 for left-invariant
X,Y,Z. If ι : G → G denotes the map g 7→ g−1 then a left-
invariant metric is bi-invariant if and only if ι is an isome-
try. It is known that a Lie group admits a bi-invariant met-
ric if and only if it is the product of a compact group and an
abelian group Rm for some m ≥ 0. For a bi-invariant met-
ric, the Riemannian exponential map coincides with the
Lie group exponential map.
On a compact Lie group, the Haar measure is a bi-
invariant probability measure. It can be obtained by in-
tegrating a properly normalized left-invariant n-form (vol-
ume form). The Haar measure lets us easily construct a
bi-invariant Riemannian metric: we can start with any left-
invariant metric and average its pullbacks under all right-
translations. This bi-invariant metric on a compact Lie
group has nonnegative sectional curvature: if {X,Y} is an
orthonormal basis for a two-plane Π ⊂ TeG then one can
show that 4K(Π) = 〈[X,Y], [X,Y]〉.
In a group, conjugation by g ∈ G is the automorphism
ψg : h 7→ ghg−1. This gives an action ψ : G → Aut(G) of
G on itself by automorphisms. (Of course this is trivial if
G is abelian.)
Now suppose G is a Lie group. The derivative Adg :=
Deψg of ψg at e ∈ G is an invertible linear transformation
of TeG preserving Lie bracket, that is, an automorphism of
the Lie algebra g. For a matrix Lie group this is given by
Adg : X 7→ gXg−1.
Letting g vary, we get the adjoint representation of G, a
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map

Ad: G → Aut(g).

If we take the derivative of this map at e ∈ G we get
the adjoint representation of the Lie algebra g, which is
just another way to view the Lie bracket: writing adX =

(DeAd)(X) we have adX(Y) = [X,Y]. That is, we have a
homomorphism of Lie algebras ad: g→ End(g).
The Killing form on g is the bilinear form

K(X,Y) := tr(adX ◦ adY ),

named after Wilhelm Killing (who completed his doctor-
ate in Berlin in 1872 under the direction of Weierstraß and
Kummer). Recall that the trace of matrices has the ba-
sic property tr(AB) = tr(BA), which implies that conju-
gate matrices have the same trace. For this Killing form,
This means that the Killing form is symmetric, K(X,Y) =

K(Y, X), and is invariant under Adg:

K(AdgX,AdgY) = K(X,Y).

Differentiating this last equation gives also

K(adZ X,Y) = K(X, adZY).

If G is compact, one can show that the Killing form is neg-
ative definite. Then −K gives a bi-invariant Riemannian
metric on the Lie group G.

2025 February 10: End of Lecture 31
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