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Introduction and motivation

Stochastic analysis is the analysis of continuous time stochastic processes.
In Stochastics II, you already encountered discrete time processes as models for random

phenomena that evolve in discrete time steps. Such processes can be constructed math-
ematically (Kolmogorov's criterion) and you have likely already seen some of the most
important classes of processes (martingales, Markov chains), as well as some of the most
fundamental results on their behavior (martingale convergence, martingale inequalities,
fundamental theorem of Markov chains, Donsker's invariance principle, etc.).

But of course it is also be interesting to study continuous time phenomena, which do
not evolve in clearly separated time steps. This is more complex: in discrete time, one
time is following after the next one, and to describe stochastic processes we only have to
understand how they transition from one step to the next. In continuous time there is no
�next step�, we can go from t to t+1, but also to t+ 1

2
or t+ �

100. Therefore, we will need
many newmathematical tools to describe and analyze continuous time stochastic processes.

As a motivation, let us look at some examples where continuous time stochastic processes
arise:
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Example. (Stock price) The pictures of stock price trajectories typically look very
irregular, bouncing up and down constantly. As toy model for the evolution of a stock price,
we can consider a Brownian motion (which already appeared in Stochastik II). Brownian
motion is a continuous time stochastic process (Bt)t>0 with continuous trajectories, such
that Bt�N (0; t) for all t> 0, where N (0; t) denotes the normal distribution with mean 0
and variance t, and such that Bt+s¡Bt is independent of (Br)06r6t.

The intuition behind this model is that there are many small traders, who all inde-
pendently of each other try to buy or sell the stock. Each time a small trader buys, the
stock price moves up a bit. Each time they sell, it moves down a bit. The fact that the
increments are normally distributed thus follows from the central limit theorem. Moreover,
if we assume that the decisions of each trader is independent of all previous decisions by
all the other traders, then we get the independence of Bt+s¡Bt and (Br)06r6t.

We will see later in the lecture how to construct the Brownian motion and that the
description above characterizes it uniquely. And we will study some of its path properties
to see that it indeed behaves quite wildly and it resembles the familiar pictures of stock
price trajectories.

Figure 1. A typical realization of a Brownian motion.

For example, the Brownian motion has no isolated zeros, meaning that if Bt= 0 for
some t, then in any small interval [t¡ "; t+ "] there are infinitely many s with Bs=0. We
will also see that B is nowhere differentiable and behaves roughly speaking like

jBt+dt¡Btj' d t
p

:

Of course, this is not a mathematical statement and part of the work will be to find a
suitable mathematical statement that we can actually prove.

Exercise. Throughout the text there will be small exercises like this one, marked in blue.
You should think about the exercises and try to solve them before the next lecture. Some
of them will be elementary and only require you to revisit the definitions and make sure
that you understood everything. Some others might be a bit more involved and might need
some inspiration. It is no problem if you cannot solve an exercise, but you should always
at least try.
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Look at the y-axis of Figure 1. Do these numbers make you think of a stock price? If
not, can you think of a simple transformation that we could do in order to obtain a more
reasonable candidate for the price process?

Example. (Stochastic differential equations from Donker's invariance principle)
The following difference equation is a prototypical example of a random discrete time
evolution:

Xn+1=Xn+ b(Xn)+�(Xn)Yn; (1)

where Yn is random influence, �noise�. More concretely, one could consider for example a
(stochastic) Malthusian population growth model, where Xn is the size of a population and

Xn+1=Xn+ bXn+XnYn;

where b2R is the deterministic growth rate and (Yn)n2N is a centered family of indepen-
dent and identically distributed (i.i.d.) random variables that models randomly occurring
deviations from the deterministic growth rate.

If we assume that the (Yn)n2N are a centered family of i.i.d. random variables with finite
variance, then Donsker's invariance principle (which you might have seen in Stochastik II)
asserts that Sn=

P
k=1
n Yk can be rescaled so that it converges to a Brownian motion. S is

evolving in discrete time steps, but under the rescaling for Donsker's theorem the transition
times between the steps become infinitely small, and in the limit one finds a continuous
time variable.

It then seems reasonable to expect (and under suitable assumptions it can be proven)
that X can be rescaled in such a way that it converges to a process (Zt)t>0 satisfying for
t> 0 and h> 0

Zt+h=Zt+ b(Zt)h+�(Zt)(Bt+h¡Bt);

where B is a Brownian motion. Bringing Zt to the left hand side, dividing by h and letting
h! 0, we formally obtain

@tZt= b(Zt)+�(Zt)@tBt:

But B is not differentiable in time, so it is not clear how to interpret this equation! To
make sense of such �stochastic differential equations�, and to this end first of �stochastic
integrals�, will be one of the main goals of the lecture.

Example. (Noise to model unresolved influences) Another situation where sto-
chastic differential equations appear is the following: applied scientists often model time-
evolving systems by ordinary differential equations (ODEs)

X_ t= b(Xt):

However, in reality the modelled system might not be isolated from its environment. To
model influences of the environment, we have two choices:

i. We increase the dimension of our system by attempting to also model the environ-
ment; however this ultimately leads to an infinite-dimensional system, and often is
unfeasible because nature is just too complex.

ii. We try to find a �random� model for the influence of the environment. Under suitable
assumptions we should be able to invoke the central limit theorem, so that these
random influences should be centered Gaussians.
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In the second scenario, in many situations it is also reasonable to assume that the random
influences are stationary in time, and independent for different times. So formally we end
up with the equation

X_ t= b(Xt)+ �t;

where (�t)t>0 is an i.i.d. family of centered Gaussian variables. It turns out that this
equation does not make sense, because it is not possible to construct �a version� of � that
has measurable trajectories and thus it is not clear how to interpret the equation. The
solution to this problem is to formally assume that �t has infinite variance for fixed times.
We will see how to make this rigorous and how to model an ODE forced by �white noise�
(which turns out to be, intuitively, the �time derivative� of Brownian motion).

Example. (A toy model for Earth's climate) A more concrete version of this example
is a particle in a double well potential: Consider b(x)=¡U 0(x) for U(x)= 1

4
x4¡ 1

2
x2. One

can easily verify that there are three fixed points for the dynamics X_ t=¡U 0(Xt) (imagine
a ball rolling down the potential U , except damping at the bottom): two stable fixed points
f¡1; 1g and one unstable fixed point f0g.

-2 -1,5 -1 -0,5 0 0,5 1 1,5 2

-0,5

-0,25

0,25

0,5

0,75

1

Figure 2. Double well potential U .

So if we start in x< 0 the solution will converge to ¡1 for t!1, and if we start in
x> 0 it will converge to 1.

The ODE X_ t=¡U 0(Xt) could serve as a qualitative toy model for the earth's climate:
Assume ¡1 represents an ice age and +1 a warm period. These two states are quite stable
for the climate, after all we are not constantly switching between ice ages and warm periods.
But from time to time there are transitions, and in the ODE model we never see them.
But if we add a very small random forcing of white noise type, as described above, then
the forcing can �kick� (rarely) the solution over the hill into the domain of attraction of
the other stable fixed point. It might then be interesting to calculate how long this will
typically take.

Example. (Stochastic gradient descent, we didn't cover it in the lectures) In
many applied problems, e.g. statistical estimation or training of artificial neural networks
in machine learning, we are interested in finding the minimum of a function of the form

F (x)= 1
n

X
i=1

n

fi(x);
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where typically n is very large. A gradient descent would solve the ODE

X_ t=¡rF (Xt)

and for t!1 the solution would converge to a local minimum of F (note that @tF (Xt)=
¡jrF (Xt)j2< 0; compare also with the double well example from above). We can imple-
ment a gradient descent on the computer with a simple Euler scheme:

Xk+1=Xk¡ �rF (Xk)=Xk¡ �
1
n

X
i=1

n

rfi(Xk);

where �>0 is a small parameter, called the learning rate. However, in practice one usually
uses the following stochastic gradient descent instead: At each step pick i 2 f1; :::; ng
uniformly at random and set

Xk+1=Xk¡ �rfi(Xk):

This has two advantages: if n is large, the stochastic gradient descent is much cheaper to
compute. And by introducing randomness into the algorithm it is no longer a pure descent
and transitions to Xk+1 with F (Xk+1)>F (Xk) are possible. This means that we may exit
the domain of attraction of a local minimum, and by carefully tuning the algorithm we
might hope to converge to a global minimum. Sometimes it is argued that the stochastic
gradient descent is similar to

Xk+1=Xk¡ �rF (Xk)+ �noise�;

which by similar arguments as above is a discretization of the differential equation

@tXt=¡rF (Xt)+ @tBt:

So if we understand the behavior of this SDE for t!1, then we may learn something
about stochastic gradient descents.

Example. (Brownian motion and PDEs) If B is a Brownian motion, then for t > 0
the random variable Bt has the density

p(t; x)= 1
2�t

p exp
�
¡x

2

2 t

�
:

It is a simple exercise to verify that p solves the heat equation:

@tp(t; x)=
1
2
@xx
2 p(t; x)

for all t> 0 and x2R. As a consequence, we get for any �nice� ' (i.e. nice enough so that
the following manipulations are admissible) that the function

u(t; x) :=E ['(x+Bt)]

solves

@tu(t; x)=@t

�Z
R
' (x+ y) p(t; y)dy

�
=
Z
R
' (x+ y) 1

2
@yy
2 p(t; y)dy

=
Z
R

1
2
@yy
2 '(x+ y)p(t; y)dy=

Z
R

1
2
@xx
2 '(x+ y)p(t; y)dy= 1

2
@xx
2 u(t; x);

where we applied integration by parts to shift @yy2 from p to '. Moreover, u obviously has
the initial condition u(0; x)= '(x), so that we found a solution to the equation

@tu= @xx2 u; u(0)= ':
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This suggests a link between stochastic processes and partial differential equations (PDEs),
and in fact this link is quite deep and powerful. For example, if for x2R the process Xx

solves the stochastic differential equation

@tXt
x= b(Xt

x)+�(Xt
x)@tBt; X0=x;

then u(t; x)=E['(Xt
x)] solves the (one-dimensional) PDE

@tu(t; x)= b(x)@xu(t; x)+
1
2
�2(x)@xx2 u(t; x); u(0)= ';

and conversely the PDE can be used to characterize the law of Xx.

Example. (Diffusion Monte Carlo) In many applications we have to sample from a
measure

�(dx)= 1
Z
exp(¡V (x))dx

on Rd, where V :Rd!R is a differentiable function with
R
Rd

exp(¡V (x))dx <1 and
Z=

R
Rd

exp(¡V (x))dx is chosen so that � is a probability measure. This is a very difficult
problem, especially if d is large or V is complicated. One way of obtaining approximate
samples from � is to find a stochastic process with invariant measure �. The most famous
such process is the Langevin diffusion, which solves the stochastic differential equation

@tXt=¡rV (Xt)+ 2
p

@tBt:

Hopefully these examples show that there are many interesting questions to be asked
and problems to be studied. We will now start to develop the basic tools and methods of
stochastic analysis.

Literature

Large parts of the lecture are inspired by or directly taken from Le Gall's beautiful notes
[16]. There is much more material in Le Gall's notes than we can cover in the lecture and
they are a useful resource for further details. Further good references are the lecture notes
by Jacod [12], the classic monographs [14, 23, 20, 13, 7], or the great �almost sure� blog
https://almostsure.wordpress.com/. The monograph [18] is nearly entirely devoted to the
Brownian motion, and it provides a much more detailed picture of its fascinating path
properties than we can obtain in the lecture. In the beginning of the notes we repeat some
material from Stochastics I & II, and good additional references are [15, 6, 26] and some
chapters of [7].

Notation and conventions

� Unless explicitly mentioned otherwise, we always assume that (
;F ;P) is a given
probability space.

� N= f1; 2; :::g, N0=N[f0g, R+= [0;1), Q+=R+\Q.

� x�y=
P

j=1
d xj yj, AT is the transpose of the matrix A.

� x+=max fx; 0g and x¡=max f¡x; 0g.
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� lims#t f(s)= lim "!0+ f(t+ ") and lims"t f(s)= lim "!0+ f(t¡ ").

� Xs;t :=Xt¡Xs.

� The indicator function of a set A is denoted by 1A.

� B(S) is the Borel �-algebra of the topological space S. 2
 are the subsets of 
.

� If we do not specify it, we always assume an underlying probability space (
;F ;P)
as given.

� a. b means there exists some C > 0, independent of the relevant variables under
consideration, such that a6C b. For example, (x+ y)26 2(y2+ y2), so we would
write (x+ y)2.x2+ y2.

1 Gaussian processes, pre-Brownian motion and white
noise

Some background with probability theory from a measure theoretic perspective will be
assumed throughout the course; ideally all you need are things learned from Stochastik I
and II. For convenience, some material is recalled in Appendices A.1 and A.2; this material
will not be examinable, but it will be at the basis of many of the results we will develop,
so please have a proper look at it to understand if you are already familiar enough with it.

1.1 Gaussian processes

The star of this lecture is the Brownian motion, which is a particular Gaussian process.
Recall that for d2N a random variable X with values in Rd is called (centered) Gaussian
or (centered) normal if for any u2Rd the linear combination

u �X =
X
j=1

d

ujXj

of the entries of X has a one-dimensional (centered) Gaussian distribution. We also call
(X1; :::; Xd) jointly Gaussian.

Equivalently, there exist m 2Rd and a symmetric positive semi-definite matrix C 2
Rd�d such that X has the characteristic function

E[eiu�X]= eiu�m¡(u
TCu)/2; u2Rd:

Moreover,

E [u�X]=u�m; var(u�X)=uTCu:
We write X�N (m;C).

Definition 1.1. Let T=/ ; be an index set. A real-valued stochastic process X=(Xt)t2T is
called a (centered) Gaussian process if for every finite subset I�T and for all (�t)t2I2RI

the random variable
P

t2I�tXt is a real-valued (centered) Gaussian random variable.

Exercise. Show that X=(X1; :::;Xd) is a d-dimensional Gaussian random variable if and
only if (Xt)t2T with T= f1; :::; dg is a d-dimensional Gaussian process indexed by T.
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Equivalently, X is (centered) Gaussian if for any finite I �T the vector (Xt)t2I is
an jI j-dimensional Gaussian random variable. There exist two functions m:T!R and
¡:T�T!R such that E[Xt] =m(t) for all t 2T and cov(Xs; Xt) = ¡(s; t) for all s;
t2T. Moreover, the finite-dimensional distributions (and thus the law) of X are uniquely
determined by m and ¡, and ¡ is symmetric (i.e. ¡(s; t) = ¡(t; s) for all s; t 2T) and
positive semi-definite, i.e. for any finite I �T and any (�t)t2I 2RI we have

X
(s;t)2I�I

�s�t¡(s; t)= var

 X
t2I

�tXt

!
> 0:

We say that X has mean m and covariance ¡.
We can construct Gaussian random variables onRdwith a given meanm and covariance

C by transforming a �standard� d-dimensional random variable Y �N (0; I) via X =m+
C

p
Y . It is not clear how to adapt this construction to infinite T, so given m and ¡ we

need more sophisticated tools to construct a Gaussian process with meanm and covariance
¡. We achieve this with Kolmogorov's extension theorem:

Proposition 1.2. Let T=/ ; be an index set, let m:T!R, and let ¡:T�T!R be a
symmetric and positive semi-definite function. Then there exists a Gaussian process X with
mean m and covariance ¡, and the law of X is uniquely determined by m and ¡.

Proof. (Skipped in class, because of possible overlap with Stochastics II)
This follows from Kolmogorov's extension theorem. For any finite subset I�T letPI be

the law of a N ((m(t))t2I ; (¡(s; t))s;t2I) random variable. For J �I let �JI:RJ!RI be the
projection �JI((xt)t2J)= (xt)t2I. The existence of X follows from Kolmogorov's extension
criterion once we show the consistency condition PJ ��JI¡1=PI. For u2RI we haveZ

RI
eiu�xPJ ��JI¡1(dx)=

Z
RJ
e
i
P

t2Iu(t)x(t)PJ(dx)= e
i
P

t2Iu(t)m(t)¡
1

2

P
s;t2Iu(s)¡(s;t)u(t)

=
Z
RI
e
i
P

t2Iu(t)x(t)PI(dx):

So PJ ��JI¡1 and PI have the same characteristic function, and thus the two measures agree
and the proof is complete. �

---------------------- End of the lecture on October 16 ---------------------

Example 1.3. (Pre-Brownian motion) Let T=R+=[0;1), m(t)=0 and ¡(s; t)=s^
t :=min fs; tg. Then ¡ is obviously symmetric. It is also positive semi-definite: For n2N
and t1; :::; tn> 0 and �1; :::; �n2R we have

X
i;j=1

n

�i�j¡(ti; tj)=
X
i;j=1

n

�i�j

Z
0

1
1[0;ti](s)1[0;tj](s)ds=

Z
0

1
 X
i=1

n

�i1[0;ti](s)

!
2

ds> 0:

The Gaussian process B with mean m and covariance ¡ is called a pre-Brownian motion.

Later, we will define a Brownian motion as a pre-Brownian motion with continuous
trajectories.
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Lemma 1.4. (Alternative characterization of the pre-Brownian motion) Let
(Bt)t>0 be a real-valued stochastic process. Then B is a pre-Brownian motion if and only
if the following conditions are satisfied:

i. B0=0 almost surely;

ii. for all 06s<t the random variable Bt¡Bs is independent of the variables (Br)06r6s;
iii. for all 06 s< t we have Bt¡Bs�N (0; t¡ s).

Exercise. Prove the above lemma.

Example 1.5. (pre-Fractional Brownian motion, or pre-fBm for short) LetH 2 (0;
1), let T=R+ and m(t)= 0 and

¡H(s; t)= 1
2
(t2H+ s2H ¡ jt¡ sj2H):

¡ is obviously symmetric, but it is not so easy to see that it is positive semi-definite. One
way of showing it is similar to our argument for pre-Brownian motion: one can show that

¡H(s; t)=
Z
R
�(s; r)�(t; r)dr

for

�(s; r) := 1

(H +1/2)

¡
(s¡ r)+

H¡1/2¡ (¡r)+
H¡1/2�

;

where 
 is the Gamma function and (just for this time) we set x+ := x+=max fx; 0g.
ThereforeX

i;j=1

n

�i�j¡H(ti; tj)=
X
i;j=1

n

�i�j

Z
R
�(ti; r)�(tj ; r)dr=

Z
R

 X
i=1

n

�i�(ti; r)

!
2

dr> 0:

The Gaussian process BH with mean m�0 and covariance ¡H is called the fractional pre-
Brownian motion with Hurst index H. In other words, pre-fBm of parameter H 2 (0; 1) is
characterized by being a Gaussian process (BtH)t>0 with

E[BtH]= 0; E[BtHBsH] =
1
2
(t2H+ s2H ¡ jt¡ sj2H):

Exercise. Show that for H =1/2 the process BH is a pre-Brownian motion.

One can show that BH becomes more and more irregular if we decrease H.

Figure 1.1. Fractional Brownian motion with Hurst index H = 0.2 and H = 0.8, respectively.
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Example 1.6. (pre-Brownian bridge) LetT=[0;1] andm(t)=0 and ¡(s; t)=s^ t¡st.
This ¡ is symmetric and in the exercise below you show that it is positive semi-definite.
The centered Gaussian process with covariance function ¡ is called the (pre-)Brownian
bridge, and it looks like a Brownian motion on [0; 1], except that at time 1 it ends up in 0
instead of being �free� like the end-point of the Brownian motion on [0; 1]. To understand
this, we plot 20 samples of the Brownian motion and 20 samples of the Brownian bridge
and compare the results.

Exercise. Let (Bt)t>0 be a pre-Brownian motion and let Xt=Bt¡ tB1, t2 [0; 1]. Show
that X is a pre-Brownian bridge. In particular, ¡ is positive semi-definite because it is the
covariance function of X.

20 Samples of Brownian motion:

Python 3.7.4 [/opt/anaconda3/bin/python3]
Python plugin for TeXmacs.
Please see the documentation in Help -> Plugins -> Python

>>> import numpy as np
import matplotlib.pyplot as plt

T, h = 1, 1e-3
n = int(T/h)
k = 20

time = np.arange(0,T+h,h)
dB = np.sqrt(h)*(np.random.randn(k,n))
BM = np.zeros((k,n+1))
BM[:,1:] = np.cumsum(dB, axis=1)

plt.clf()

for i in range(k):
plt.plot(time,BM[i,:])

pdf_out(plt.gcf())

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

2

Next, we plot 20 samples of the Brownian bridge:
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>>> BB = np.zeros((k,n+1))
BB[:,1:] = np.cumsum(dB, axis=1) - np.outer(BM[:,n], time[1:])

plt.clf()

for i in range(k):
plt.plot(time,BB[i,:])

pdf_out(plt.gcf())

0.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.0

0.5

1.0

>>>

1.2 White noise and Brownian motion

Example 1.7. (Naive white noise) In the introduction we discussed examples where
we want to add noise to ordinary differential equations (ODEs). Intuitively, the most
natural noise seems to be an i.i.d. family of standard normal variables (�t)t2R+, i.e. � is a
centered Gaussian process with covariance ¡(s; t)=1s=t. This would mean that the noise
is stationary (it has the same distribution at each time) and what happens at time t is
independent of what happens at any other time s=/ t. We call this process a naive white
noise. To understand where the name �white noise� comes from, note that if we plot i.i.d.
random variables in the plane rather than on R+, then the image resembles the static
�white noise� that you might remember from old analog televisions; see the next figure.

Figure 1.2. 2d naive white noise
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Of course, then the question is why static noise should be called white noise. We will
discuss this on Sheet 1.

We introduced the naive white noise because we want to consider ODEs perturbed by
noise, say

X_ t= b(Xt)+ �t; X0=x0;

which in integral form reads as

Xt=x0+
Z
0

t

b(Xs)ds+
Z
0

t

�sds:

Unfortunately, if � is a naive white noise, the map (!; s) 7! �s(!) cannot be jointly mea-
surable and thus the formal expression

R
0

t
�sds might be problematic:

Lemma 1.8. Let (�t)t>0 be a naive white noise and let t > 0. Then the map


� [0; t]3 (!; s) 7! �s(!)2R

is not measurable with respect to the product �-algebra F 
 B([0; t]), and in particular
! 7!

R
0

t
�s(!)ds might not be defined or even if it is defined it might not be a random variable.

Proof. Assume to the contrary that � j
�[0;t] is measurable with respect to F 
B([0; t]).
Then also


� [0; t]� [0; t]3 (!; s1; s2) 7! �s1(!)�s2(!)2R

is measurable with respect to F 
B([0; t])
B([0; t]), and for each r 2 [0; t]:Z
0

rZ
0

r

E[j�s1�s2j]ds1ds2<1;

asE[j�s1�s2j]61 by the Cauchy-Schwarz inequality. Thus, the Fubini-Tonelli theorem shows
that for all r 2 [0; t]

E

��Z
0

r

�sds
�
2
�
=E

�Z
0

r

�s1ds1
Z
0

r

�s2ds2

�
=E

�Z
0

rZ
0

r

�s1�s2ds1ds2

�
=
Z
0

rZ
0

r

E[�s1�s2] ds1ds2

=
Z
0

rZ
0

r

1s1=s2 ds1ds2=0:

Therefore,
R
0

r
�sds=0 almost surely, and since the countable union of null sets is a null set

we deduce that almost surely
R
0

r
�sds=0 for all r 2 [0; t]\Q.

On the other hand, again by Fubini-Tonelli

E

�Z
0

t

j�sjds
�
=
Z
0

t

E[j�sj]ds=
2
�

r
t <1;

where we used the fact that E[j�sj]= 2/�
p

since �s�N (0;1) (and we don't need to know
this precise formula but only that E[jX j]2 (0;1) for a standard normal distribution X).
Therefore a.s. s 7! �s(!) is Lebesgue integrable on [0; t] and by the dominated convergence
theorem the map r 7!

R
0

r
�s(!)ds is continuous on [0; t].
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Combined with the above, this implies that almost surely
R
0

r
�sds=0 for all r 2 [0; t].

But then a.s. �s=0 for Lebesgue-almost all s2 [0; t], thus E[
R
0

t j�sjds]=0; but this is absurd
because we just saw that E[

R
0

t j�sjds]= t 2/�
p

. Therefore, the assumption must have been
incorrect. �

Exercise. Justify the last step of the proof: Show that if f 2 L1([0; t]) is such thatR
0

r
f(s)ds=0 for all r 2 [0; t], then f(s)=0 for Lebesgue-almost all s2 [0; t].
Hint: Recall Dynkin's �¡� theorem, cf. Theorem A.8 in Appendix A.2.

The way out of this dilemma is to formally assume that (�t)t>0 is an i.i.d. family of
N (0;1) variables rather than N (0;1) variables, i.e. that E[�t2]=1. Of course, this makes
no sense. But let us abandon mathematical rigor for a moment and argue as physicists.
Then we can consider the physicist's Dirac delta function �:R!f0;1g, which satisfies

�(x)=
�
1; x=0;
0; x=/ 0;

and
Z
R
f(x)�(x)dx= f(0);

and we assume that (�t)t>0 is a centered Gaussian process with covariance function

E[�s�t]= �(t¡ s):

This still does not make any sense, but if we assume that we can integrate
R
0

1
�tf(t)dt for

f 2L2(R+), then we obtain formally

E

�Z
0

1
�tf(t)dt

Z
0

1
�sg(s)ds

�
=
Z
0

1Z
0

1
E[�t�s]f(t)g(s)dsdt

=
Z
0

1Z
0

1
�(t¡ s)f(t)g(s)dsdt

=
Z
0

1�Z
¡1

t

�(s)f(t¡ s)ds
�
g(t)dt

=
Z
0

1
f(t)g(t)dt:

These were only formal manipulations. But now we can take this formal identity and take
it as the definition of a (non-naive) white noise. We interpret

�(f)=
Z
0

1
�tf(t)dt;

where the right hand side is formal notation assuming that � has a density, and the left
hand side is the �action of � on f �. This is conceptually similar to formally writingZ

0

1
f(t)�(t)dt := �(f) :=

Z
0

1
f(t)�(dt)

for a measure � on B(R+), even if � does not have a density with respect to Lebesgue
measure. Note however that the white noise is not a measure, so even this interpretation
is dubious. Instead we abandon the connection with densities and measures, and we define
the white noise rigorously as follows:

Definition 1.9. (White noise) Let T=L2(R+) and

¡(f ; g)=
Z
0

1
f(t)g(t)dt= hf ; giL2(R+):
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Then ¡ is symmetric and positive semi-definite, and the centered Gaussian process
(�(f))f2L2(R+) with covariance ¡ is called white noise.

Exercise. Show that ¡ is indeed positive semi-definite.

Definition 1.10. Let (X;dX) and (Y ; dY ) be metric spaces. A map T :X!Y is called an
isometry if dY (T (x); T (x0))= dX(x; x0) for all x; x02X.

Lemma 1.11. If (�(f))f2L2(R+) is a white noise, then

L2(R+)3 f 7! �(f)2L2(
)
is a linear isometry.

Proof. Let us write h�; �i= h�; �iL2(R+). We have for f ; g; h2L2(R+) and �; � 2R

E[(��(f)+ ��(g)¡ �(�f + �g))�(h)] =�hf ; hi+ � hg; hi¡ h�f + �g; hi=0;

so in particular

E[(��(f)+ ��(g)¡ �(�f + �g))2]= 0;

i.e. ��(f)+ ��(g)= �(�f + �g) and � is linear. Since k�(f)kL2(
)2 =E[�(f)2]= kf kL2(R+)
2 ,

� is an isometry. �

To recap: Our motivation for introducing the naive white noise was that it seems to
be natural noise to add to an ODE. But we saw that for a naive white noise � we cannot
make sense of the ODE

Xt=x0+
Z
0

t

b(Xs)ds+
Z
0

t

�sds;

because the integral on the right hand side is not defined or not a random variable. But
now we can take a white noise and use formal notation to writeZ

0

t

�sds=
Z
0

1
1[0;t](s)�sds= �(1[0;t]);

and since 1[0;t]2L2(R+) the right hand side is perfectly well defined.

Exercise. Let � be a white noise and define Bt= �(1[0;t]), for t>0. Show that B is a pre-
Brownian motion.

---------------------- End of the lecture on October 17 ---------------------

Above we performed the construction of white noise for (�(f))f2H whereH=L2(R+) us
a Hilbert space. More generally, given any Hilbert space H , one can construct a centered
Gaussian process (X(h))h2H with E[X(f)X(g)]= hf ; giH, and also in that case h 7!X(h)
is a linear isometry; see Exercise Sheet 1 for such a construction. In this case, � is called
a white noise on H.

Recap: having now interpreted
R
0

t
�sds as �(1[0;t]) :=Bt and having established that the

latter is a pre-Brownian motion, we finally end up with the stochastic differential equation
(SDE)

Xt=x0+
Z
0

t

b(Xs)ds+Bt:
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This is still problematic because of bad path properties of the pre-Brownian motion (the
map t 7!Bt(!) might not be measurable), but now we just have to turn the pre-Brownian
motion into an actual Brownian motion with continuous trajectories and then we can solve
the SDE. We will do this later in the course, for now we discuss the relation between white
noise and Brownian motion further.

The previous exercise shows that formally the (pre-)Brownian motion is the integral of
the white noise. Conversely, we formally have �t= @tBt, i.e. white noise is the derivative
of the (pre-)Brownian motion:

Lemma 1.12. (Wiener integral) Let (Bt)t>0 be a pre-Brownian motion and let

E =

(
f 2L2(R+): f(t)=

X
k=0

n¡1

xk1(tk;tk+1](t); n2N; x0; :::; xn¡12R; 06 t0< t1< ���< tn

)
:

For such f we define

�(f) :=
Z
0

1
f(s)dBs :=

X
k=0

n¡1

xk(Btk+1¡Btk):

This definition does not depend on the specific representation of f, and we have

k�(f)kL2(
)2 =E[�(f)2]= kf kL2(R+)
2 :

Therefore, � has a unique continuous extension to L2(R+), also denoted by �, and we also
write Z

0

1
f(s)dBs := �(f):

The process (�(f))f2L2(R+) is a white noise.

The integral
R
0

1
f(s)dBs is called Wiener integral and it is a precursor of the Itô

integral , which we will construct later in the course and allows random integrands, not just
deterministic f like the Wiener integral.

Exercise. Why is
R
0

1
f(s)dBs :=

P
k=0
n¡1xk(Btk+1¡Btk) a sensible definition?

Proof. We leave it as an exercise to check that the definition of �(f) does not depend on
the representation of f , i.e. that if

P
k=0
n¡1xk1(tk;tk+1]=

P
`=0
m¡1 y`1(sk;sk+1], thenX

k=0

n¡1

xk(Btk+1¡Btk)=
X
`=0

m¡1

y`(Bt`+1¡Bt`):

It is clear from the definition that the map E 3 f 7! �(f) is linear; let us show the isometry
property. We have

k�(f)kL2(
)2 = E

" X
k=0

n¡1

xk(Btk+1¡Btk)

!
2
#

=
X
k;`=0

n¡1

xkx`E[(Btk+1¡Btk)(Bt`+1¡Bt`)]:

If (say) k<`, then Bt`+1¡Bt` is independent of Btk+1¡Btk and the expectation vanishes.
Therefore, we remain with the diagonal terms and obtain

k�(f)kL2(
)2 =
X
k=0

n¡1

xk
2E[(Btk+1¡Btk)2] =

X
k=0

n¡1

xk
2(tk+1¡ tk)=

Z
0

1
jf(t)j2dt= kf kL2(R+)

2 :
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Therefore,

�: (E ; k�kL2(R+))! (L2(
); k�kL2(
))

is a linear isometry, and in particular it is uniformly continuous. As E is dense in L2(R+),
the map � has a unique continuous extension to all of L2(R+), which is still a linear
isometry and which we still denote by �. It remains to show that � is a white noise.

By centered Gaussianity of B, the process (�(f))f2E is centered Gaussian, and by
a limiting argument (cf. Lemma A.3 in Appendix A.1) also (�(f))f2L2(R+) is centered
Gaussian. By polarization we have

E[�(f)�(g)]= hf ; giL2(R+); f ; g 2L2(R+);

and thus � is a white noise.

Polarization: LetX be anR-vector space and let [�; �]1; [�; �]2:X�X!R be two symmetric
bilinear forms such that [x;x]1=[x;x]2 for all x2X. Then [x; y]1=[x; y]2 for all x; y2X:

[x; y]1 = 1
4
([x+ y; x+ y]1¡ [x¡ y; x¡ y]1)

= 1
4
([x+ y; x+ y]2¡ [x¡ y; x¡ y]2)

= [x; y]2:
�

With formal notation we haveZ
0

1
f(s)dBs=

Z
0

1
f(s)@sBsds; �(f)=

Z
0

1
f(s)�sds;

and since �(f) =
R
0

1
f(s)dBs for all f 2L2(R+) we formally get @tB = �. One can make

this link rigorous with the help of Schwartz's theory of generalized functions, see Exercise
Sheet 2 for some details; but we will not need this in the main lectures.

2 Brownian motion and Poisson process

2.1 Continuity of stochastic processes
The pre-Brownian motion is not very useful yet. To turn it into an interesting and useful
process, we need to add one more property to its definition:

Definition 2.1. (Continuous stochastic process, (fractional) Brownian motion)

i. We say that a stochastic process X=(Xt)t>0 with values in Rd is continuous if all
of its trajectories are continuous, i.e. t 7!Xt(!) is continuous for all ! 2
.

ii. A continuous pre-Brownian motion such that B0(!)= 0 for all ! 2
 (rather than
B0=0 a.s.) is called a Brownian motion or Wiener process.

iii. A continuous fractional pre-Brownian motion such that B0(!) = 0 for all ! 2 

(rather than B0=0 a.s.) is called a fractional Brownian motion.

It is natural to ask under which conditions a process X is continuous and if a Brow-
nian motion exists. This turns out to be quite subtle, because it is not possible to find
conditions on the finite-dimensional distributions of X which guarantee the continuity of
its trajectories:
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Example 2.2. Let (Xt)t>0 be a continuous stochastic process with values in R, and let
� be a random variable which is uniformly distributed on [0; 1]. Then

X~t(!)=Xt(!)+1f�(!)g(t); t> 0;

is discontinuous for all ! and satisfies P (X~t=Xt) = 1 for all t> 0. In particular, X~ and
X have the same finite-dimensional distributions.

^

•

A-

fruity
T

T

Figure 2.1.

Recall from Stochastics II that the law of (Xt)t>0 is defined as the measure PX =
P�X¡1 on (RR+;B(R)
R+), and thatPX is uniquely determined by the finite-dimensional
distributions of X, i.e. the family of measures (P� (Xt)t2I

¡1 )I�T;jI j<1. Since X and X~ have
the same finite-dimensional distributions, they also have the same law on (RR+;B(R)
R+):
PX =PX~. So we have two processes with the same law, but X(!) is continuous for all
!2
, while X~(!) is discontinuous for all !2
. Consequently, we cannot determine from
the law of a process whether it is continuous.

In particular, the set C(R+; R) is not in B(R)
R+: Otherwise PX(C(R+; R)) =
PX~(C(R+;R)) would be defined and this would lead to the contradiction

1 = P(
)
= P(X 2C(R+;R))
= PX(C(R+;R))
= PX~(C(R+;R))
= P(X~ 2C(R+;R))
= P(;)=0:

Therefore, our assumption C(R+;R) 2B(R)
R+ must have been wrong. Even worse, a
variation of the same argument shows that not even the point set f0g is in B(R)
R+ (where
we write 0 for the function which maps every t to 0).

The problem is that the law of X is defined on B(R)
R+, and roughly speaking sets from
this �-algebra only depend on countably many (Xt1; Xt2; :::). But to determine whether
X is continuous we need to evaluate it at all t2R+.
Structure of B(R)
R+: The following discussion is irrelevant for our lecture. A subset
A�RR+ is in B(R)
R+ if and only if there exists t1; t2; :::2R+ and B2B(R)
N such that

A= f! 2RR+: (!(t1); !(t2); :::)2Bg:

Proving this amounts to showing that the family of sets of the claimed form is a Dynkin
system and also stable by intersection, and then to apply the �¡� theorem.
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Definition 2.3. (Modification, indistinguishable) Let X=(Xt)t2T and X~ =(X~t)t2T
be two stochastic processes with values in a measurable state space S. We say that

i. X~ is a modification of X if P(Xt=X~t)=1 for all t2T;

ii. X and X~ are indistinguishable if there exists a measurable set A2F with P(A)=1
and such that Xt(!) =X~t(!) for all ! 2A and all t2T. Formally, we also write
P(Xt=X~t for all t2T)= 1.

Note that P(Xt=X~t for all t2T) might in general not be defined, because

fXt=X~t for all t2Tg=
\
t2T

fXt=X~tg

is an intersection of uncountably many events. Therefore, we require the existence of the
measurable set A2F in ii.

The second property is much stronger than the first one. For example, if X is a con-
tinuous process and X and X~ are indistinguishable, then X~ is almost surely continuous.
While Example 2.2 shows that a continuous process can have a discontinuous modification.

---------------------- End of the lecture on October 23 ---------------------

Exercise. Let (X~t)t>0 be a modification of (Xt)t>0. Show that:

i. X and X~ have the same finite dimensional distributions and therefore the same law.

ii. If X and X~ take values in a metric space and are both continuous, then they are
indistinguishable.

There are essentially two ways to solve these problems and to construct continuous
processes:

¡ Either we construct the process of interest X on a different probability space than
(RR+; B(R)
R+), for example on (C(R+;R); B(C(R+; R))) (say via Donsker's
invariance principle for the Brownian motion).

¡ Or we use the Kolmogorov extension problem to construct a process X~ on (RR+;
B(R)
R+) which has all the prescribed finite dimensional distributions that we
want, and then try to construct a continuous modification X of X~ (so in particular
X has the required law).

Of course, there are also probability laws on (RR+; B(R)
R+) for which the associated
process can never be continuous, for example the (deterministic) process Xt= 1[1;1)(t),
or the Poisson process that we will encounter later. But in many cases of interest, most
notably for the pre-Brownian motion, one or both of these approaches can be used to
construct a continuous process with the given law. Here we will follow the second approach.

Definition 2.4. (Hölder continuity) For �2 (0; 1] and T 2 (0;+1), the space of �-
Hölder continuous functions on [0; T ] is defined as

C�([0; T ];R)= ff : [0; T ]!R; kf k�<1g; where kf k� := sup
0�s<t�T

jf(t)¡ f(s)j
jt¡ sj� :

In case of ambiguity of the time interval, we also write more explicitly

kf kC�([0;T ]) := sup
0�s<t�T

jf(t)¡ f(s)j
jt¡ sj�
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Exercise.

i. Do you know another name for 1-Hölder continuous functions?

ii. Show that for �6� we have C�([0; T ];R)�C�([0; T ];R).

One of the most important tools for constructing continuous stochastic processes is
Kolmogorov's continuity criterion.

Theorem 2.5. (Kolmogorov's continuity criterion) Let T 2 (0;+1) and let (Xt)t2[0;T ]
be a real-valued stochastic process such that there exist p2 [1;1), �> 1

p
and K> 0 with

E[jXt¡Xsjp]1/p6K jt¡ sj�: (2.1)

Then there exists a continuous modification X~ of X. Moreover, for all � 2 (0; �¡ 1

p
) there

exists a constant C =C(�; �; p; T )> 0 such that

E[kX~ k�
p]1/p6CK: (2.2)

In particular, X~ is a.s. �-Hölder continuous.

Let us postpone the proof of Theorem 2.5 and first present some applications, to show
its power. Armed with it, we can finally construct the Brownian motion.

Corollary 2.6. The Brownian motion B=(Bt)t�0 exists and (Bt)t2[0;T ] is almost surely
in C�([0; T ];R) whenever T 2 (0;1) and �< 1/2. We have

E[kBkC�([0;T ])
p ]<1 8p2 [1;1):

Proof. Let (B~t)t>0 be a pre-Brownian motion. Since B is a centered Gaussian, all its p-
moments scale in the same way and so for p> 0 we have

E[jB~t¡B~sjp]1/p=
�
cpE[jB~t¡B~sj2]

p

2

�
1/p

=
�
cp jt¡ sj

p

2

�
1/p

= cp
1/pjt¡ sj

1

2:

It follows from Corollary 2.7 below that (B~t)t>0 has a continuous modification (Bt)t>0;
so here let us focus on proving the statement (2.6). Applying Kolmogorov's continuity
criterion to (Bt)t2[0;T ] for �<

1

2
and 1

p
<

1

2
¡�, we find

E[kBkC�([0;T ])
p ]<1:

The claim was that this is true for all p>1, and the above shows it for p large enough, i.e.

p>
�
1

2
¡�

�¡1
; instead for p2 [1;

�
1

2
¡�

�¡1
] we can find n2N such that n>

�
1

2
¡�

�¡1> p
and then bound it using Jensen's inequality:

E[kBkC�([0;T ])
p ]

1

p 6E[kBkC�([0;T ])n ]
1

n <1: �

Exercise. How big do we need to choose p in the previous argument to at least be able
to apply Kolmogorov's continuity criterion? Does p= 2 work? Which Hölder continuity
would we get with p=2+ "?

Corollary 2.7. Let (Xt)t>0 be a real-valued stochastic process; suppose that there exist
p2 [1;1), �> 1

p
and K> 0 such that

E[jXt¡Xsjp]1/p6K jt¡ sj� 8s6 t:
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Then there exists a continuous modification X~ of X.

Proof. The difference to the formulation of Theorem 2.5 is that now X is indexed by
R+, and not by a compact interval [0; T ]. But we can apply for each n2N Kolmogorov's
continuity criterion to obtain a continuous modification (X~t

(n))t2[0;n] of (Xt)t2[0;n]. We
would like to define X~t=X~t

(n) for n> t. The problem is that there are infinitely many
possible choices for n> t, so we have to justify that this definition does not depend on n
and that it leads to a continuous process.

If m>n, then (X~t
(n))t2[0;n] and (X~t

(m))t2[0;n] are both modifications of (Xt)t2[0;n] and
they are both continuous, so they are indistinguishable. Since the countable union of null
sets is a null set, we obtain P(N)=0 for

N =
�
! 2
: 9m;n2N s.t. n6m and X~t

(n)(!)=/ X~t
(m) for some t6n

	
:

We then define for t6n:

X~t(!)=

(
X~t
(n)(!); ! 2N c;

0; ! 2N:

Since N is a null set, X~ is a modification of X, and it is trivially continuous for ! 2N .
And since for ! 2N c we have

X~t(!)=X~t
(n)(!)=X~t

(m)(!)

for all n;m> t and all the
¡
X~t
(k)�

t are continuous, we get that X~(!) is continuous. �

We can finally present the

Proof of Theorem 2.5. We use the notation

Xs;t :=Xt¡Xs:

1. By rescaling time t! T � t, we may assume without loss of generality that T = 1
(convince yourself of this! See the blue exercise later).

2. Assume that we already showed for a dense subset D� [0; 1] that:

E

" 
sup

s=/ t2D

jXs;tj
jt¡ sj�

!p#1/p
6CK: (2.3)

Then in particular sups=/ t2D
jXs;t(!)j
jt¡ sj�

<1 for almost all !, and for such ! the

function X(!) is uniformly continuous on the dense subset D� [0; 1]. Therefore, it
has a unique continuous extension to a function X~(!) on [0; 1], which satisfies

sup
s=/ t2[0;1]

jX~s;t(!)j
jt¡ sj�

= sup
s=/ t2D

jXs;t(!)j
jt¡ sj�

:

If ! is in the null set for which sups=/ t2D
jXs;t(!)j
jt¡ sj�

=1, we simply define X~t(!)= 0

for all t2 [0;1]. Then X~ is continuous and it satisfies (2.2), but we still have to show
that it is a modification of X.

For t2D we have a.s. Xt=X~t by construction. For t2/ D consider a sequence
(tn) �D with tn! t. Then X~tn(!)!X~t(!) for all ! by continuity of X~ , and
Xtn!Xt in Lp because E[jXtn ¡Xtjp]1/p6K jt ¡ tnj�. Therefore, the sequence
(X~tn=Xtn)n converges a.s. to X~t and it converges in Lp to Xt, thus X~t=Xt a.s.
and X~ is indeed a modification of X.
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3. It remains to show (2.3). For n2N0, consider the dyadic times

Dn := ftkn := k2¡n; 06 k6 2ng; D :=
[
n=0

1

Dn;

and let
�n= f(tkn; tk+1n ): 06 k6 2n¡ 1g

be the nearest neighbors in Dn. Then D is dense and it suffices to show (2.3) for
this D. Let for n2N0:

Mn := max
k=0;:::;2n¡1

jXtk
n;tk+1

n j= max
(s;t)2�n

jXs;tj:
Then

E[Mn
p]1/p =E

h
max

k=0;:::;2n¡1
jXtk

n;tk+1
n jp

i
1/p

6E
" X
k=0

2n¡1

jXtk
n;tk+1

n jp
#
1/p

=

 X
k=0

2n¡1

E[jXtk
n;tk+1

n jp]

!
1/p

62n/pK2¡n�=K2¡n
�
�¡ 1

p

�
:

(2.4)

This bound would suffice if we only wanted to compare s; t2
S
n�n. But we also

have to treat the case s= tkn and t= t`m for arbitrary m;n and k; `. We claim that

sup
s=/ t2D

jXs;tj
jt¡ sj�

6 2�+1M; (2.5)

whereM :=
P

n=0
1 2n�Mn2 [0;1]. If this is the case, then by the triangle inequality

for the Lp-norm (�Minkowski's inequality�), we have:

E[M p]1/p=kM kLp6
X
n=0

1

k2n�MnkLp

6
(2:4)X

n=0

1

2n�K2
¡n

�
�¡ 1

p

�
=K

X
n=0

1

2
n
�
�¡

�
�¡ 1

p

��
=KC~ ;

where C~ =
P

n=0
1 2

n
�
�¡

�
�¡ 1

p

��
<1 because � <�¡ 1

p
, so that the geometric series

converges. Combining the above bound on kM kLp(
) with claim (2.5) thus yields
the conclusion (2.2).

--------------------- End of the lecture on October 24 ----------------------

4. To prove the claim (2.5), we use a chaining argument : Define for s< t2D:

sn :=min fr 2Dn: r> sg; tn :=max fr 2Dn: r6 tg:
Since s; t2D=

S
mDm we have sn= s and tn= t from some n on.

T tm-13Am-14 Im+2 Dm tm n

"
Il tmtz

11Smes Santa truth

Figure 2.2. Illustration of the sn and tn.
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Consider now m2N0 such that 2¡m¡1<t¡ s6 2¡m. Then

jXt¡Xsj 6 jXt¡Xtmj+ jXtm¡Xsmj+ jXsm¡Xsj

6
X
n=m

1

jXtn+1¡Xtnj+ jXtm¡Xsmj+
X
n=m

1

jXsn¡Xsn+1j;

where the two series on the right hand side are actually finite sums. Since 2¡m> t¡s
we know that either sm= tm or (sm; tm)2�m. Moreover,

sn¡ sn+16 sn¡ s< 2¡n

and sn; sn+12Dn+1, so either sn=sn+1 or (sn+1; sn)2�n+1. Similarly for (tn; tn+1).
Therefore, we can estimate

jXs;tj
jt¡ sj�

6jt¡ sj¡�
 
2
X
n=m

1

max
(u;v)2�n+1

jXu;vj+ max
(u;v)2�m

jXu;v j

!

6(2¡m¡1)¡�2
X
n=m

1

Mn6 2�+1
X
n=m

1

2n�Mn6 2�+1M;

where M =
P

n=0
1 2n�Mn. This concludes the proof. �

Exercise.

i. Deduce that: If (Xt)t2[0;T ] is such that E[jXt¡Xsjp]6K jt¡sj
 for some p>1 and

 > 1, then X has a continuous modification. On Sheet 2 we will see that this is
false for 
=1.

ii. Convince yourself that the same proof works if X takes values in a complete metric
space (important special case: Banach space). But completeness is important: where
did we use the fact that R is complete?

iii. Justify Step 1 of the proof. In fact, apply scaling to get a more precise statement: if
X satisfies (2.1) on [0; T ], then for all �2 (0;�¡ 1

p
) there exists a constant C~=C~(�;

�; p)> 0 such that

E[kX~ k�
p]1/p6C~KT�¡�

where now the dependence on T is explicit. Note that the r.h.s. explodes as T!1.
Can you reconstruct the exact expression of C~(�; �; p) from the proof?

Lemma 1.4 is analogously true for Brownian motion: a continuous stochastic process
is a Brownian motion if and only if the conditions i.-iii. in the lemma are satisfied.

Remark 2.8. The Brownian motion is only Hölder-continuous on compact intervals, but
not on R+, i.e. we a.s. have sup06s<t<1

jBt¡Bsj
jt¡ sj� =1 for all �2R. You will show this on

Sheet 2.

Remark 2.9.

i. Recall from Probability Theory II that the Borel �-algebra on C(R+;R)=C(R+),
equipped with the topology of locally uniform convergence, is given by

B(C(R+))=B(R)
R+\C(R+)= fA\C(R+):A2B(R)
R+g:
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Therefore, a map X :
!C(R+) is F ¡B(C(R+;R))-measurable if and only if Xt:

!R is F ¡B(R)-measurable for all t>0. In other words, X is a random variable
taking values in C(R+) if and only if (Xt)t>0 is a continuous stochastic process.
Therefore, any continuous stochastic process induces a probability measure PX on
(C(R+);B(C(R+))) via PX(A)=P(X 2A) (i.e. PX is the distribution of X).

ii. The distribution PB of the Brownian motion is often called the Wiener measure
on (C(R+);B(C(R+))); the probability space (C(R+);B(C(R+));PB) is called the
Wiener space.

In fact, we can extend the discussion in the previous remark to show that any continuous
stochastic process can be realized on the space (C(R+);B(C(R+))) in a canonical way. To
this end, we need to introduce some notation. Given ! 2C(R+) and t> 0, we define the
evaluation map et:C(R+)!R as et(f)= f(t).

(In the lecture, the next statement was presented in a slightly more informal
way as part of the discussion in the previous remark)

Lemma 2.10. Let X be a continuous real valued stochastic process, PX be its law. On the
probability space (C(R+);B(C(R+));PX), consider the collection (et)t>0. Then (et)t>0 is
a continuous stochastic process, with law PX.

Proof. It's easy to see that, for each t, et is a linear, continuous map; thus in particular is
is measurable from (C(R+);B(C(R+))) to (R;B(R)), namely it is a random variable, so
that (et)t>0 is a stochastic process. For any f 2C(R+), the map t 7! et(f)= f(t) is none
other than f itself, which is continuous by definition, so (et)t>0 is a continuous stochastic
process. Now consider n2N, (t1; :::; tn)2R+

n , Ai2B(R) for i=1; :::n, and the subset of
RR+ given by ¡= ff 2RR+: f(ti)2Aig. Then by construction

PX(f 2C(R+): eti(f)2Ai for i=1; :::; n)=PX((et)t>02¡\C(R+))
=P(X 2¡\C(R+))
=P(Xti2Ai for i=1; :::n)

which shows that the finite dimensional distributions of (et)t>0 under PX coincide with
the finite dimensional distributions of X under P. In particular, (et)t>0 and X (which are
possibly defined on different probability spaces!) have the same law. �

In probability, quite often we do not really care about the underlying probability space
(
;F ;P), which is treated as an abstract object. The above result however tells us that, in
the case of continuous stochastic processes, if needed we can make it very explicit: we can
take 
=C(R+), with the associated Borel �-algebra, and P to be the law of the process
itself. This is sometimes referred to as the canonical representation of the processX. Notice
that in this case 
 becomes a complete separable metric space and a vector space, so it
has a very nice structure.

For a Brownian motion B and n 2N, we can consider the piecewise linear dyadic
approximationB(n), which interpolatesB linearly between the points tk

n :=k2¡n, for k2N0;
namely

Bt
(n): =

X
k=0

1

1[tkn;tk+1n )(t) (Btkn+2n(t¡ tkn)Btkn;tk+1n ):

By continuity of B(n) it is clear that supt6T jBt
(n)(!)¡Bt(!)j converges to 0 for all !2


and all T 2 (0;+1). It is also not difficult to show that for f 2L2(R+) we haveZ
0

1
f(t)dBt= lim

n!1

Z
0

1
f(t)dBt

(n)= lim
n!1

Z
0

1
f(t)@tBt

(n)dt :=lim
n!1

Z
0

1
f(t)�t

(n)dt;

24 Section 2



where the left hand side is the Wiener integral and �t
(n) := @tBt

(n) for all t (this is well
defined for all t2/ ftkn: k 2N0g, and in tk

n we could for example take the right derivative),
and the convergence is in L2(
). Since

R
0

1
f(t)dBt= �(f) for a white noise �, we get that

�(f) = limn!1
R
0

1
f(t)�t

(n)dt, so in a sense we can intepret � as limit of �(n). Moreover,
by construction

�t
(n)=

X
k=0

1
1[tkn;tk+1n )(t)2nBtkn;tk+1n :

By independence of the Brownian increments we get that �(n)j[tkn;tk+1n ) and �(n)j[t`n;t`+1n ) are
independent for k=/ `. Moreover, E[�t

(n)]= 0 and Var(�t
(n))= 2n for all t> 0. So by letting

n!1 we formally obtain indeed that (�t)t>0 are independent and identically distributed
Gaussian random variables with infinite variance. Of course, this is again purely formal
and just intended to guide your intuition.

2.2 Some path properties of the Brownian motion
So far we showed that the Brownian motion exists and it is almost surely �-Hölder contin-
uous on compact subintervals of R+ whenever �<1/2. Our next aim is to understand its
trajectories better. For example a priori it is not clear whether the Brownian motion can
be more regular than �-Hölder continuous. Although in simulations it looks very rough,
so we would not expect it to be a C1 function, and indeed we will show that it is not.

Figure 2.3. Sample path of a Brownian motion.

Throughout this section we fix a Brownian motion B. Let us start by showing the
invariance of the law of B under certain path transformations:

Proposition 2.11.

i. (¡Bt)t>0 is a Brownian motion;

ii. more generally, for any �2R n f0g, (�¡1B�2t)t>0 is a Brownian motion;

iii. (Bt+s¡Bs)t>0 for s> 0 is a Brownian motion, and is independent of (Br)r2[0;s]
( �Markov property�);

iv. (t �B1/t)t>0, where we set 0 �B1/0 :=0, is indistinguishable from a Brownian motion.

Proof. i., ii., iii. were shown on Sheet 1.

Brownian motion and Poisson process 25



iv.: The process (t �B1/t)t>0 is Gaussian, continuous everywhere except possibly at 0,
and for 0<s< t we have

E [(s �B1/s)(t �B1/t)]= s � t(1/t)= s= s^ t:

It remains to show the (almost sure) continuity at 0. For that purpose, note that by
continuity of t 7! tB1/t on (0; 1], it holdsn

!: lim
t!0

t �B1/t(!)=0
o
=
\
m2N

[
n2N

f!: jt �B1/t(!)j6 1/m for all t2Q\ (0; 1/n]g:

The event on the right hand side depends only on (t �B1/t)t2Q\(0;1], and this process has the
same law as (Bt)t2Q\(0;1] (both are centered Gaussian processes with the same covariance).
Therefore

P
�
lim
t!0

t �B1/t=0
�
=P
 \
m2N

[
n2N

fjt �B1/tj6 1/m for all t2Q\ (0; 1/n]g
!

=P
 \
m2N

[
n2N

fjBtj6 1/m for all t2Q\ (0; 1/n]g
!

=P
�
lim
t!0

Bt=0
�
=1;

and the proof is complete. �

Theorem 2.12. With probability 1 there exists no t2 [0;+1) at which B is differentiable.

Proof. The countable union of null sets is a null set and (Bn+t¡Bn)t2[0;1] is a Brownian
motion restricted to [0; 1], so it suffices to show that almost surely (Bt)t2[0;1] is nowhere

differentiable. If B is differentiable at t2 [0;1], then there exists a constant C~>0 such that

jBt+h¡Btj6C~h; 8h2 [0; 1]: (2.6)

A priori, C~ could be random; however, if we show that

P(! 2
: 9t2 [0; 1]: jBt+h¡Btj6Ch 8h2 [0; 1])= 0 (2.7)

for all deterministic, arbitrarily large constants C>0, then the same must hold for random
but finite C~ > 0 as well. In particular, to conclude it suffices to show (2.7) and from now
on we can assume C to be deterministic and fixed. Define the event

¡= f! 2
:9t2 [0; 1]: jBt+h¡Btj6Ch 8h2 [0; 1]g:

Notice that, by the order of quantifiers, t here is allowed to be random, i.e. depend on the
fixed realization ! we are looking at; so it's hard to manipulate ¡ directly, and we want
to compare it to �simpler� events.

Suppose t 2 [0; 1] is such that (2.6) hold; let n 2N, and let 06 k < 2n be such that
t2 [k2¡n; (k+1)2¡n]. Then for all 16 j < 2n we have

jB(k+j+1)2¡n¡B(k+j)2¡nj6jB(k+j+1)2¡n¡Btj+ jBt¡B(k+j)2¡nj
6C((k+ j+1)2¡n¡ k2¡n)+C((k+ j)2¡n¡ k2¡n)
6C(2j+1)2¡n:

Let us define the events


n;k=
\

j=1;2;3

fjB(k+j+1)2¡n¡B(k+j)2¡nj6C(2j+1)2¡ng;
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then the previous argument in fact shows that, for any n2N,

¡�
[
k=0

2n¡1


n;k:

Therefore to show that P(¡) = 0, it suffices to estimate the probability of the set on the
r.h.s., and show that it becomes infinitesimal as n!1.

---------------------- End of the lecture on October 30 ---------------------

By the independence and scaling properties of B

P(
n;k)=
Y
j=1

3

P (jB(k+j+1)2¡n¡B(k+j)2¡nj6C(2j+1) 2¡n)

=
Y
j=1

3

P (jB1j6C(2j+1)2¡n/2)

6P(jB1j6C � 7 � 2¡n/2)3

6(C � 7 � 2¡n/2)3;

where in the last step we used that the density of the standard normal distribution is
bounded by 1/ 2�

p
6 1/2. Thus,

P(¡)6P
 [

k=0

2n¡1


n;k

!

6
X
k=0

2n¡1
P(
n;k). 2n 2¡3n/2=2¡n/2

and our claim follows by sending n!1. �

In fact, one can slightly improve the previous proof to obtain a stronger statement:

Proposition 2.13. Let �> 1

2
. With probability 1 there exists no t2 [0;+1) at which B

is �-Hölder continuous (i.e. such that jBs¡Btj6C jt¡ sj� for all s> 0).

The proof is left as part of Exercise Sheet 3.

Remark 2.14. It is not true that the Brownian motion is nowhere 1/2-Hölder continuous:
there are so-called �slow points� where it shows an exceptional behavior. This is beyond the
scope of our lecture. But it is not very difficult to see that if t>0 is fixed, then almost surely

limsup
s!t

jBs¡Btj
js¡ tj1/2

=1: (2.8)

One can combine our results on regularity of B at 0, with the fact that (tB1/t)t>0 is a
Brownian motion (time invertion), to learn something about the long time behavior of B:

Corollary 2.15. For any �> 1/2, with probability 1 we have

0= lim
t!1

jBtj
t�

< limsup
t!1

jBtj
t1/2

=1:

Proof. We have

limsup
t!1

jBtj
t�

=
s=

1

t limsup
s!0

jsB1/sj
s � s¡� = limsup

s!0

jB~sj
s1¡�

;
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where B~s= sB1/s is another Brownian motion by Proposition 2.11-iv.; since 1¡�< 1/2,
we can find "> 0 small enough such that a.s. B~ 2C1¡�+"([0; 1]), so that

limsup
s!0

jB~sj
s1¡�

6 limsup
s!0

kB~kC1¡�+"
s1¡�+"

s1¡�
=0

which implies that the limsup is a limit and equals 0. For �=1/2, we similarly get

limsup
t!1

jBtj
t1/2

= limsup
s!0

jB~sj
s1/2

=1

where the last equality comes from (2.8). �

So far we showed: Brownian motion is almost surely (1/2¡ ")-Hölder continuous on
every compact interval, and it is almost surely nowhere (1/2+")-Hölder continuous. With
some more work, it can be shown that at �= 1

2
there are some logarithmic corrections.

The next statement is not examinable, but it is included here for completeness so that
you have seen it at least once, as it's a fairly celebrated result.

Theorem 2.16. (Lévy's modulus of continuity & law of the iterated logarithm)

i. Lévy's modulus of continuity: Almost surely, for any T 2 (0;+1):

lim
r!0

sup
s;t2[0;T ]:
jt¡sj6r

jBt¡Bsj
2r log(1/r)

p =1:

ii. Law of the iterated logarithm: For any t > 0 we have almost surely

limsup
r!0

Bt+r¡Bt
2r log log(1/r)

p =1; liminf
r!0

Bt+r¡Bt
2r log log(1/r)

p =¡1:

Proof. See Revuz-Yor [23], Theorem I.2.7 and Theorem II.1.9. �

Of course, we would suspect to have

¡1= liminf
t!1

Bt

t1/2
< limsup

t!1

Bt

t1/2
=1;

and indeed one can use Theorem 2.16 and time invertion to prove this (and more). We
will not do so, but instead obtain this later as a simple consequence of Blumenthal's 0-1-law.

Exercise. Use the law of the iterated logarithm to deduce a stronger statement about the
long time behavior of B.

2.3 The Poisson process
We can interpret the Brownian motion as a continuous time random walk, because just like
a random walk it has independent and stationary increments (i.e. Bt¡Bs is independent of
what happened until time s, and it has the same distribution as Br+t¡Br+s for any r). It
is natural to ask whether there are other processes of this type. This leads to the following
definition:

Definition 2.17. (Lévy process) A real-valued stochastic process (Xt)t>0 is called a
Lévy process if

i. X0=0;
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ii. for all 06 t0< t1< ���< tn the random variables (Xt1¡Xt0; :::; Xtn¡Xtn¡1) are
independent ( independent increments);

iii. for all 06 s < t the random variable Xt¡Xs has the same distribution as Xt¡s
( stationary increments);

iv. for all "> 0 and t> 0 we have limh!0P(jXt+h¡Xtj>")=0 ( continuity in proba-
bility).

Exercise.

a) Convince yourself of the following: parts i.-ii. imply that Xt¡Xs is independent of
(Xr)r6s; part iv. is equivalent to Xs converging in probability to Xt as s! t.

b) Show that the Brownian motion is a Lévy process.

c) Show that for all a2R the linear function Xt= a � t is a Lévy process.

If X is a Lévy process, then we can write

X1=X1/n+(X2/n¡X1/n)+ ���+(X1¡X(n¡1)/n):

Let us write �t for the law of Xt. Then the left hand side has law �1, and the right hand
side has law given by the n-fold convolution

�1/n
�n :=

�1/n � ::: � �1/n||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
n times

;

this is because, if U and V are independent random variables with law(U)=� and law(V )=
�, then law(U +V )= � � �, where the convolution � � � is the measure defined by

� � �(A) :=
Z

1A(x+ y)�(dx)�(dy):

Thus, for all n 2N there exists a measure �1/n such that �1= �1/n
�n . Any � which has

this property is called infinitely divisible. So, if X is a Lévy process, then X1 is infinitely
divisible. Conversely, one can show that for any infinitely divisible distribution � there
exists a unique (in law) Lévy process X with law(X1)= �. Therefore, Lévy processes are
in one-to-one correspondence with infinitely divisible distributions.

Exercise. (Difficult) Show that if X is a centered Lévy process such that X1 is bounded
(i.e. there exists C > 0 such that a.s. jX1j6C), then X1=0 a.s.

Hint: Consider var(X1).

�
The infinite divisibility imposes strong structural constraints on Lévy processes, and

every Lévy process can be characterized in terms of its Lévy-Khintchine representation:

Theorem 2.18. (Lévy-Khintchine representation) If X is a Lévy process, then the
characteristic function of X satisfies

E[eiuXt] = et (u); t> 0; u2R;

where  is of the form

 (u)= iau¡ 1
2
�2u2+

Z
Rnf0g

(eiux¡ 1¡ iux1fjxj<1g)�(dx);

for a2R, �2> 0, and for a measure � on Rn f0g such that
R
Rnf0g(1^ jxj

2)�(dx)<1 (a

so called Lévy measure). We call (a; �2; �) the Lévy triple of X.

Proof. See Klenke [15], Theorem 16.17. �
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Remark 2.19. Without further explanation, this result is not very interesting. But it has
a neat probabilistic interpretation: Let X be a Lévy process with characteristic function
E[eiuXt]= et (u) for

 (u)= iau¡ 1
2
�2u2+

Z
Rnf0g

(eiux¡ 1¡ iux1fjxj<1g)�(dx):

Then we can decompose X into a sum of three independent processes, X =X(1)+X(2)+
X(3), where

� Xt
(1)= at;

� Xt
(2)=�Bt, for a Brownian motion B;

� Xt
(3) is a �jump process�, with jumps determined by the Lévy measure �.

Exercise. Show that if �=0 and thus X(3)�0, then for Xt
(1)=at and Xt

(2)=�Bt we get
the claimed form of the characteristic function.

Since � describes jumps (namely, points where jump discontinuities arise in the map
t 7!Xt), this implies that the Brownian motion is the only centered and continuous Lévy
process (up to constant multiples).

Example 2.20. (Pre-Poisson process) Let X be a Lévy process such that for �> 0:

 (u)=�(eiu¡ 1);

i.e. a=�2=0 and �=��1 is a multiple of the Dirac measure in x=1. Then

E[eiuXt] = e�t(e
iu¡1);

which is the characteristic function of a Poisson distribution with parameter �t. We call
this process the pre-Poisson process (with intensity �).

Poisson distribution: Recall that a random variable Y with values in N0 has a Poisson
distribution with parameter �> 0 if P(Y = k)= �k

k!
e¡�, k 2N0. We write Y �Poi(�).

Exercise. Show that the Poisson distribution with parameter �>0 has the characteristic
function E[eiuX] = exp(�(eiu¡ 1)).

Remark 2.21. Alternatively, we can describe the pre-Poisson process as follows: A sto-
chastic process (Nt)t>0 is a pre-Poisson process with intensity � > 0 if and only if the
following conditions are satisfied:

i. N0=0 almost surely;

ii. for all 06 s< t the random variable Nt¡Ns is independent of (Nr)06r6s;
iii. for all 06 s< t we have Nt¡Ns�Poi(�(t¡ s)).

Exercise. Convince yourself of this!

Hopefully it will not be a surprise to you at this point that the Poisson process (without
�pre-�) will be a pre-Poisson process with nice trajectories. But note that the Poisson
distribution takes values in N0, so the Poisson process cannot be continuous. To formulate
its path properties, we introduce the following notation for f :R+!R:

f(t+) := lim
s#t

f(s) := lim
s!t
s>t

f(s); f(t¡ ) := lim
s"t

f(s) := lim
s!t
s<t

f(s);
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and similarly limsups#t f(s), liminfs"t f(s), etc. Recall that a function f is called right-
continuous (resp. left-continuous) if f(t+)= f(t) for all t>0 (resp. f(t¡ )= f(t) for all
t > 0).

Exercise. Which of these functions is left- and/or right-continuous?

i. f =1[1;1);

ii. f =1(1;1);

iii. f =1f1g;

iv. f(t)= sin
�

1

1¡ t

�
, t2 [0; 1), and f(t)=0 for t> 1.

Definition 2.22. (Càdlàg) A function f :R+!R is called càdlàg if it is right-continuous
and at every t>0 the limit f(t¡ ) exists (but might not be equal to f(t)). A càdlàg function
t 7! f(t) has a jump at t if

�f(t) := f(t)¡ f (t¡ )=/ 0:

The acronym càdlàg comes from French and stands for �continue à droite, limite à gauche�,
that is �continuous from the right, limits from the left�.

Lemma 2.23. Let f :R+!R be càdlàg; then f has at most countably many jumps, i.e.
there exist at most countably many ftngn2N such that �f(tn)> 0.

Proof. Exercise Sheet 3. �

Definition 2.24. (Càdlàg process, Poisson process)

i. We say that a stochastic process X = (Xt)t>0 with values in Rd is càdlàg if all of
its trajectories are càdlàg, i.e. t 7!Xt(!) is càdlàg for all ! 2
.

ii. A càdlàg pre-Poisson process is called a Poisson process.

To get a more intuitive understanding of the Poisson process, we use the following
explicit construction:

Theorem 2.25. Let (Tn)n2N be an i.i.d. sequence of exponentially distributed random
variables with parameter �> 0. We define Sn :=T1+ ���+Tn and

Nt :=max fn:Sn6 tg; t> 0:

Then (Nt)t>0 is (indistinguishable from) a Poisson process with intensity �.

Recall that the exponential distribution with parameter �>0 has density 1R+(x)�e
¡�x.

A

•-

•-

•-

•-

•-

÷÷÷i÷÷÷÷s÷..
Figure 2.4. Poisson process constructed from (Tn)n>0.
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Let us momentarily postpone the proof of Theorem 2.25 and discuss the insight it
provides on the nature of the trajectories of (Nt)t>0 first.

The Poisson process is a �counting process� which is piecewise constant and which
jumps up by 1 at random times (Sn)n2N. The times between the jumps are independent,
and they follow an exponential distribution with parameter �.

The Poisson process is used to model the (cumulative) number of customers arriving
at a store, or the damage claims at an insurance, the number of clicks of a Geiger counter
(which corresponds to the number of decaying atoms), or the number of meteorites hitting
earth.

The Poisson process is in some sense �the most elementary jump process� and almost all
other pure jump processes can be constructed from it. On Sheet 3 you will construct a Lévy
process with a general Lévy measure �, provided that � has finite mass (�(Rn f0g)<1).
Such a process is also called compound Poisson process, because we can represent it as

Xt=
X
k=1

Nt

Yk;

where N =(Nt)t>0 is a Poisson process with intensity �= �(Rnf0g), and (Yk)k2N is inde-
pendent of N and an i.i.d. sequence of random variables with distribution Yk�

�

�(Rn f0g) .

It follows from a computation that the Lévy triple of X is a=
R
jxj<1x�(dx), �

2=0, �.

---------------------- End of the lecture on October 31st ---------------------

One could give an alternative derivation of the Poisson process, where we divide R+ in
intervals of length 1

n
and consider a discrete time process which on each of these intervals

jumps up by 1 with a small probability of order �
n
, independently of what happened before.

For n!1, the finite-dimensional distributions of this process converge to the finite-
dimensional distributions of a Poisson process with intensity � (this is sometimes referred
to as the law of small numbers); more details on this construction might appear later in
the Exercise Sheets.

Hopefully, this makes it plausible why we can model the phenomena mentioned above
with a Poisson process: For example, each second there is a small probability that a
customer enters our store, and at first approximation we can consider the different second-
long intervals as independent.

We can now finally conclude this section with the

Proof of Theorem 2.25. We show that N satisfies the properties of Remark 2.21, and
that it is almost surely càdlàg.

� N is almost surely càdlàg: By definition, N is càdlàg on the set fsupnSn=1g. But
by �-continuity we have

P
�
sup
n
Sn<1

�
= lim

m!1
P
�
sup
n
Sn<m

�
6 lim
m!1

lim
n!1

P(Sn<m)

6 lim
m!1

lim
n!1

P
�

max
k=1;:::;n

Tn<m
�

= lim
m!1

lim
n!1

P(T1<m)n=0;

because P(T1<m)< 1.
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� We have N0=0 by definition. So to verify the conditions of Remark 2.21 it suffices
to show that for all n 2N and 0 = t0< t1< ���< tn the random variables (Nt1¡
Nt0; :::; Ntn ¡Ntn¡1) are independent, and that Ntk+1 ¡Ntk� Poi(�(tk+1 ¡ tk)).
For simplicity we restrict our attention to the case n=2. The general case can be
handled by similar arguments, but the notation becomes much more tedious. We
will show that for all 06 s< t and all k; `2N0

P(Ns= k;Nt¡Ns= `)=
(�s)k

k!
e¡�s

(�(t¡ s))`
`!

e¡�(t¡s): (2.10)

By summing over `2N0 respectively k2N0 we see that Ns�Poi(�s) and Nt¡Ns�
Poi(�(t¡ s)), and then that Ns and Nt¡Ns are independent.

To handle the computation, we need a bit of notation. Note that (T1; :::; Tk+`+1)
has the density 1R+

k+`+1(x)�k+`+1e¡��k+`+1(x) with respect to Lebesgue measure on

Rk+`+1, where for n6m we define �n:Rm!R by

�n(x): =x1+ ���+xn:

It will be also useful to exploit the following fact: it holdsZ
R+
n
1f�n(x)6rgdx=

Z
R+
n
1fx1+���+xn6rgdx=

rn

n!
8n> 1; r 2 (0;+1): (2.11)

We postpone the verification of (2.11) to the end of the proof.

� We start by considering the case `=0. In this case

P(Ns= k;Nt¡Ns=0)=P(Ns= k;Nt=Ns)
=P(Sk6 s<Sk+1; Sk6 t <Sk+1)
=P(Sk6 s; Sk+1>t)
=P(Sk6 s; Tk+1> t¡Sk):

Since Tk+1 is independent of (T1; :::; Tk), thus Sk, we can compute the above prob-
ability by first conditioning on Tk+1 as

P(Sk6 s; Tk+1>t)=
Z
R+
k
1f�k(x)6sg�

k e¡��k(x)P(Tk+1>t¡�k(x))dx;

here and below, we can always change the order of integration at will by virtue
of Fubini's theorem, because all terms appearing are non-negative. Since Tk+1 is
exponentially distributed, P(Tk+1>r)= e¡�r for all r> 0 and so

P(Ns= k;Nt¡Ns=0)=
Z
R+
k
1f�k(x)6sg�

k e¡��k(x) e¡�(t¡�k(x))dx

=�k e¡�t
Z
R+
k
1f�k(x)6sgdx

=�k e�t s
k

k!
= (�s)k

k!
e¡�s

(�t)0

0!
e¡�(t¡s)

proving (2.10) in this case; in the intermediate passages, we applied (2.11).

� Next we deal with the case `> 1. We start by writing

P(Ns= k;Nt¡Ns= `) = P(Ns= k;Nt= k+ `)
= P(Sk6 s<Sk+1; Sk+`6 t <Sk+`+1):
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Using the same notation for �k as before, and the density of (T1; :::; Tk+`+1), this
leads to

P(Sk6 s<Sk+1; Sk+`6 t <Sk+`+1)
=
Z
R+
k+`+1

1f�k(x)6s<�k+1(x)g1f�k+`(x)6t<�k+`+1(x)g�
k+`+1e¡��k+`+1(x)dx:

The expression is a bit more complicated than before, but we can proceed similarly.
We start by integrating out xk+`+1. We apply the change of variables z=�k+`+1(x)
and obtainZ
0

1
1f�k+`(x)6t<�k+`+1(x)g�e

¡��k+`+1(x)dxk+`+1 =
Z
�k+`(x)

1
1f�k+`(x)6t<zg�e

¡�zdz

= 1f�k+`(x)6tge
¡�t;

which leads toZ
R+
k+`+1

1f�k(x)6s<�k+1(x)g1f�k+`(x)6t<�k+`+1(x)g�
k+`+1e¡��k+`+1(x)dx

=�k+`e¡�t
Z
R+
k+`

1f�k(x)6s<�k+1(x)g1f�k+`(x)6tgdx:

Now we perform the change of variables y1=�k+1(x)¡ s, y2=xk+2, . . . , y`=xk+`
and obtain Z

R+
k+`

1f�k(x)6s<�k+1(x)g1f�k+`(x)6tgdx

=
Z
R+
k
1f�k(x)6sg

 Z
R+
`
1fy1+���+y`6t¡sgdy

!
dx

= sk

k!
� (t¡ s)

`

`!
;

where in the last passage we used (2.11). Altogether, we have shown that for k2N0

and `2N,

P(Ns= k;Nt¡Ns= `)=
sk

k!
� (t¡ s)

`

`!
�k+`e¡�t= (�s)k

k!
e¡�s � (�(t¡ s))

`

`!
e¡�(t¡s);

namely, (2.10) holds. Together with the previous case, this complete the verification
of (2.10) for any k; `2N0.

� We finally prove (2.11). For n=1 we have
R
R+
1 1fx16rgdx=

R
0

r1dx1=r1/1! and then
by inductionZ

R+
n
1fx1+���+xn6rgdx =

Z
0

r
 Z

R+
n¡1

1fx1+���+xn¡16r¡xngdx1���dxn¡1

!
dxn

=
Z
0

r (r¡xn)n¡1
(n¡ 1)! dxn=

rn

n!

which shows (2.11). �

[Comment: in Theorem 2.25 we verified that Nt is a Poisson process �by hand�, using
elementary but lengthy manipulations. There is an alternative more elegant approach, based
on the notion of infinitesimal generator of the Markov process, but it is outside the scope
of these lectures; see Theorem 2.4.3 from [ 19] for more details.]
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Exercise. Let (Nt
1)t>0 and (Nt2)t>0 be independent Poisson processes with intensity �1>0

respectively �2> 0. Show that Nt :=Nt
1+Nt

2, t> 0, is a Poisson process with intensity
�1+�2.

3 Filtrations and stopping times
So far we have analysed Brownian motion as one of the most canonical examples of: a)
(continuous) Gaussian processes; b) Lévy processes. There are two other fundamental cat-
egories of which Brownian motion is a prominent example, which are respectively Markov
processes and (continuous) martingales. In order to introduce them, we first need to make
a detour on the concept of filtrations, stopping times and progressive processes.

3.1 Filtrations and stopping times

Definition 3.1. (Filtration, right-continuous)

i. A filtration is an increasing family F=(Ft)t>0 of sub sigma-algebras of F, i.e. such
that Fs�Ft�F for all 06 s6 t. We write

F1 :=
_
t>0

Ft=�
 [
t>0

Ft
!
; Ft+ :=

\
s>t

Fs; for any t> 0:

We call (
;F ;F;P) a filtered probability space.

ii. A filtration F is called right-continuous if Ft+=Ft for all t> 0. We write F+=
(Ft+)t>0 for the smallest right-continuous filtration containing F, given by

Ft+ :=
\
s>t

Fs=Ft+; t> 0:

Note that (F+)+=F+ for every filtration.

Exercise. Show the last statement.

---------------------- End of the lecture on November 6 ---------------------

Definition 3.2. (Canonical/natural filtration) Let (Xt)t>0 be a stochastic process and
set Ft :=�(Xs: s6 t). In this case we write FX := (FtX)t>0 := (Ft)t>0 and we call FX the
canonical filtration (or natural filtration) of X. We also write FX+ := (FX)+.

Note that in general we can have FX+=/ FX, even if X is continuous and real-valued:
for example

A :=
�
!: lim

h#0

Xt+h(!)¡Xt(!)
h

exists
�
2FtX+;

but in general A2/ FtX.

Definition 3.3. (Adapted process) A stochastic process (Xt)t>0 is called adapted to a
given filtration F if Xt is Ft�measurable for all t> 0.

Clearly, any process X is adapted to its canonical filtration FX.
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Definition 3.4. (Negligible sets, complete �-algebra, completion)
Let (
;F ;P) be a probability space and let G �F be a �-algebra.

i. A set B�
 is called P-negligible (with respect to F), or simply negligible, if there
exists N 2F with P(N)=0 such that B�N. We write NP for the P-negligible sets.

ii. G is called complete (with respect to F) if NP�G.

iii. The completion of G (with respect to F) is GP :=�(G [NP):

Remark 3.5. (Exercise, see also Durrett [6], Theorem A.2.3) The completion FP

of F is given by

FP= fA[B:A2F ; B 2NPg:

Therefore, we can uniquely extend P from F to FP by setting

P (A[B)=P(A):

Definition 3.6. (Complete filtration, usual conditions) Let F be a filtration.

i. F is called complete if Ft is complete for all t> 0; equivalently, if F0 is complete.

ii. F satisfies the usual conditions if it is right-continuous and complete.

If F is a filtration, then

F+;P := (FP)+

is right-continuous and complete by construction. One can show that it is the smallest
filtration containing F that satisfies the usual conditions. This is called the usual augmen-
tation (or extension) of a filtration. Here it is important that we first take the completion,
and after that we make the filtration right-continuous: if we took the opposite order, then
the resulting filtration (F+)P might not be right-continuous.

Definition 3.7. (Stopping time, events determined until �) Let F be a filtration. An
F-stopping time (or simply stopping time, if there is no ambiguity about the filtration) is a
map � :
! [0;1] such that f�6tg2Ft for all t>0. If � is a F-stopping time, then we write

F� := fA2F :A\f� 6 tg2Ft for all t> 0g (3.1)

for the �-algebra of events determined until �.

Stopping times have many useful properties:

Lemma 3.8. Let F be a filtration and let � : 
! [0;1].

i. If � is a stopping time, then F� is indeed a �-algebra.

ii. If �(!)= t for all !, where t2 [0;1] is fixed, then � is a stopping time and Ft=F�
where F� is defined in ( 3.1). So our definitions are consistent.

iii. If � is a stopping time, then so is � + t for any t2 [0;1]; the same is not necessarily
true for � ¡ t. In particular, F�+t is a �-algebra for any t> 0 and we can define
F�+ :=

T
t>0F�+t.

iv. � is an F+-stopping time if and only if f� < tg2Ft for all t > 0.

v. If � is a stopping time, then � is F��measurable.

vi. If �1, �2 are stopping times with �1(!)6 �2(!) for all ! 2
, then F�1�F�2.
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vii. If �1, �2 are stopping times, then �1_ �2 and �1^ �2 are stopping times and

F�1^�2=F�1\F�2:

Proof. Parts i., ii., iii. and v. are part of Exercise Sheet 4. Let us prove the rest.
iv. If f� < rg2Fr for all r, then

f� 6 tg=
\
n2N

�
� < t+ 1

n

�
�
\
s>t

Fs=Ft+;

so � is an F+-stopping time. If � is an F+-stopping time, then

f� < tg=
[
n2N

�
� 6 t¡ 1

n

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
2Ft¡1/n

+ �Ft

2Ft:

vi. Let A2F�1 and t> 0. Then A2F and since f�16 tg�f�26 tg, we have

A\f�26 tg=(A\f�16 tg)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
2Ft

\f�26 tg2Ft:

therefore A2F�2 as well.
vii. For all t> 0, we have:

f�1_ �26 tg= f�16 tg\f�26 tg2Ft;

so �1_ �2 is a stopping time. Similarly,

f�1^ �26 tg= f�16 tg[f�26 tg2Ft;
so �1^ �2 is a stopping time.

Since �1 ^ �26 �i for i= 1; 2, by vi. we know that F�1^�2�F�1 \F�2. Conversely, let
A2F�1\F�2. Then A2F and

A\f�1^ �26 tg=(A\f�16 tg)[ (A\f�26 tg)2Ft
and thus A2F�1^�2. �

The most important examples of stopping times are so called hitting times:

Definition 3.9. (Entry/hitting time) Let X = (Xt)t>0 be a stochastic process taking
values in a measurable space (S;S). For A2S, we define the entry time, or hitting time
of X into A, as

�A(!) := inf ft> 0:Xt(!)2Ag;

where we adopt the standard convetion inf ;=1.

If X is adapted to F, then we would expect that by knowing the trajectory of X until
time t> 0, we can decide whether X entered A strictly before t:

f�A< tg=
[
s<t

fXs2Ag:

on the other hand, note that e.g. for an open set A, it is intuitively clear that in general
we can only decide if �A6 t if we can �peak a bit into the future�. So one might hope that

f�A6 tg=
\
">0

f�A< t+ "g=
\
">0

[
s<t+"

fXs2Ag2F+
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and so that �A is an F+-stopping time. But there is a problem with these arguments: While
fXs 2Ag 2 Fs, our descriptions of f�A< tg and f�A6 tg involve unions of uncountably
many events, so a priori these sets are not in Ft or Ft+. We could only deduce that �A is
a stopping time or an F+-stopping time if we were somehow able to reduce to countably
many set operations. Under suitable conditions on A and X, this is possible:

Proposition 3.10. Let (S; d) be a metric space and let X be a stochastic process with
values in S which is adapted to the filtration F.

i. If A�S is open and X is right-continuous or left-continuous, then �A is an F+-stop-
ping time.

ii. If A�S is closed and X is continuous, then �A is an F-stopping time.

Proof.

i. If A is open and X is left- or right-continuous, we have

f�A<tg=
[

s2Q\[0;t)
fXs2Ag2Ft;

so by Lemma 3.8 we get that �A is an F+-stopping time.

ii. We get from the continuity of X and closedness of A that infima are always realized
as minima, so that

f�A6 tg=
�

min
s2[0;t]

d(Xs; A)= 0
�
=
�

inf
s2Q\[0;t]

d(Xs; A)=0
�
2Ft;

where we wrote d(x;A)= inf fd(x; a):a2Ag. �

Exercise. Let X be an adapted, real-valued, increasing process, i.e. such that t 7!Xt(!)
is (not necessarily strictly) increasing for all !2
. Show that �a := infft>0:Xt>ag is an
F+-stopping time for all a2R. If X is additionally right-continuous, then �a is even an
F-stopping time.

3.2 Progressively measurable processes
We discussed that entry times for (one-sided) continuous and adapted stochastic processes
are stopping times. Sometimes the assumption of path continuity is too much, but adapted-
ness gives us no control at all about the trajectories. The notion of progressive measurability
answer this issue: it is stronger than adaptedness and for example (almost) sufficient
for a process to serve as a stochastic integrand (up to additional technical conditions, as
we will see later), but at the same time much less restrictive than continuity of trajectories.

In the following, we are given a filterered probability space (
;F ;F;P) and another
measurable space (S;S).

Definition 3.11. ((Progressively) measurable processes) A stochastic process X =
(Xt)t>0 taking values in (S;S) is called

i. measurable if the map


�R+3 (!; t) 7!Xt(!)2S

is (F 
B(R+);S)�measurable;
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ii. progressive (or progressively measurable) if for any t> 0, the map


� [0; t]3 (!; s) 7!Xs(!)2S

is (Ft
B([0; t]);S)�measurable.

Remark 3.12. We can define the �-algebra of progressive sets by

Prog= fA2F 
B(R+):A\ (
� [0; t])2Ft
B([0; t])g;

notice that A2Prog if and only if 1A is progressive. It can be shown that X : 
�R+!
S is progressively measurable if and only if it is (Prog; S)-measurable; in other words,
progressive measurability amounts to measurability w.r.t. the �-algebra of progressive sets.

In the case when (S;S)= (R;B(R)), this fact has many useful consequences:

� If X and Y are progressive, so are X +Y and X �Y ;

� If (Xn)n is a sequence of progressive processes, then limsupnXn and liminfnXn

are still progressive; in particular, whenever it exists, Xt(!) := limn!1X
n(t; !) is

progressive.

Exercise. Check that Prog is a �-algebra.

Example 3.13. If 06 s<u and Y 2Fs, then the process

Xt(!)=Y (!)1[s;u)(t) (3.2)

is progressive; similarly for X~t(!)=Y (!)1fsg(t).

Exercise. Show that the process defined in (3.2) is progressive.

Lemma 3.14. Let (Xt)t>0 be a stochastic process taking values in (S;S).
i. If X is measurable, then the map t 7!Xt(!) is (B(R+);S)�measurable for all !2
.
ii. If X is progressive, then it is measurable and F-adapted.

iii. If S is a metric space, S=B(S) and X is right-continuous (or left-continuous) and
adapted, then X is progressive.

---------------------- End of the lecture on November 7 ---------------------

Proof. (The proofs of i. and ii. were skipped in the lecture in the interest of
time, but for those interested they are included here)

i. The statement is in fact part of Fubini theorem, or if you prefer the fundamental
property of product �-algebras like F 
B(R+) are well-behaved under sections; a
self-contained proof can be given by means of the monotone class theorem (The-
orem A.11) applied with the �-system E = fA�B:A2F ; B 2B(R+)g.

ii. It is clear that X is measurable. To see that X is adapted, note that for t�0, ¡2S
we have

f!:Xt(!)2¡g= f!: (!; t)2X¡1(¡)g;

where we interpret X as a map from 
� [0; t] to S. By assumption we have B =
X¡1(¡)2Ft
B([0; t]), and therefore the t-section f!: (!; t)2Bg is in Ft.

iii. Let X be right-continuous and fix t> 0. For n2N, define the processes

Xn: 
� [0; t]!S; Xs
n=

X
k=0

n¡1

1h k
n
t;
k+1

n
t
�(s)Xk+1

n
t
+1ftg(s)Xt:
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Since X is right-continuous, we have limn!1Xs
n(!)=Xs(!) for all s2 [0; t] and all

!2
; so it suffices to show that Xn is Ft
B([0; t])�measurable for all n. Since X is
adapted,X(k+1)t/n is Ft�measurable and so 1[kt/n;(k+1)t/n)(s)X(k+1)t/n is Ft
B([0;
t])�measurable; since this property is preserved under summation, we conclude that
Xn is Ft
B([0; t])�measurable.

If X is left-continuous, we similarly define Xn in a discrete way by approxi-
mating X from the left. �

Lemma 3.14 indicates why progressive measurability is a useful property. For instance,
it follows by similar arguments that if X is a progressive and bounded process (in the
sense that there exists a constant C > 0 such that jXt(!)j6C for all (t; !)), then by the
measurability of t 7!Xt(!) we can construct the time integral Yt(!)=

R
0

t
Xs(!)ds; it's not

too hard to see that the resulting process (Yt)t>0 is continuous and F-adapted, therefore by
Lemma 3.14 it is progressive. In particular, under mild assumptions, progressive processes
are closed under the operation of integration in time. With a bit of work it can be also
shown that, if X is progressive, so is the running maximum Xt

� := sups6tXt.

Remark 3.15. Due to continuity of its trajectories, it follows from Lemma 3.14 that
Brownian motion (Bt)t>0 is progressive (w.r.t. its natural filtration), and so in particular it
is (F 
B(R+);R)�measurable. A similar argument applies to the Poisson process (Nt)t>0.

Existence of (progressively) measurable modifications: In the lectures, Lemma 3.14
will always suffice for our purposes. The following discussion was not presented in details
in the lectures and is not examinable; it is a bit more technical in nature, but useful to get
a more complete picture.

We have seen before that Kolmogorov's continuity criterion provides sufficient con-
ditions for the existence of a continuous modification, and at the same time there are
stochastic processes to which it does not apply (e.g. Poisson) for which we can still have
càdlàg trajectories. It makes sense to wonder whether there are other abstract results
guaranteeing the existence of measurable modifications. This is indeed the case, and the
standard requirement in the literature is that (Xt)t>0 is stochastically continuous, namely
that Xt+" converges in probability to Xt whenever "!0, for all t>0; moreover, if (Xt)t>0
is F-adapted and stochastically continuous, then it admits a progressively measurable mod-
ification (X~t)t>0, see Propositions 3.2 and 3.6-3.7 from [3].

Stochastic continuity is sufficient but not necessary for the existence of a measur-
able modification; the latter instead is equivalent to �stochastic quasi-continuity�, see the
recent [5]. Moreover, if (Xt)t>0 is a measurable, F-adapted process, a classical result
ensures the existence of a progressively measurable modification (X~t)t>0, see Theorem IV.30
from [4]; the standard proof however is very demanding, see the recent [21] for a more
elementary one. Notice that, if we start with an adapted continuous process (Xt)t>0,
there is no guarantee that the abstract modification (X~t)t>0 obtained in this way will
be still continuous; thus in this case we are better off applying Lemma 3.14 anyway.

The interest in stopping times often comes from looking at �stopped processes�, and in
particular at computing the statistics of the process (Xt)t>0 exactly when it is evaluated
at the random time � . Namely, we are interested in the map ! 7!X�(!) :=X�(!)(!) for a
stopping time � . Since � (!) may be infinite, this map may not be defined for all !. So as
a convention, we introduce a �cemetery state� �2/ S and set

X�(!) :=

(
X�(!)(!) if � (!)<1;
� if � (!)=1:
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On S [f�g, we consider the sigma algebra S [ fA[f�g:A2Sg.

Lemma 3.16. Let X be progressive and let � be a stopping time. ThenX� is F��measurable.

Proof. We first show that f!: � (!)6 t; X�(!) 2 Ag 2 Ft for all A 2 S and t> 0. We
introduce

�: f� 6 tg!
� [0; t] �(!)= (!; �(!));

which is (Ft\f� 6 tg;Ft
B([0; t]))�measurable, where

Ft\f� 6 tg= fA\f� 6 tg:A2Ftg�Ft:
We also introduce

	:
� [0; t]!S; 	(!; s)=Xs(!);

which by assumption is (Ft
B([0; t]);S)�measurable.
So X� jf�6tg is a composition of measurable maps,

X� jf�6tg=	 ��;

and thus it is (Ft\f� 6 tg;S)�measurable. Therefore,

f!: �(!)6 t;X�(!)2Ag= f! 2f� 6 tg:X�(!)2Ag2Ft\f� 6 tg�Ft:

It remains to show that fX� 2Ag is F-measurable for all A2S [ fB [f�g:B 2Sg. For
A2S, by the preceding we have

fX� 2Ag= fX� 2A; � <1g=
[
n2N

fX� 2A; � 6ng|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
2Fn

2F :

For A=B [f�g we have

fX� 2Ag= fX� 2B; � <1g[f� =1g2F : �

As a consequence of Lemma 3.16, we can deduce that stopped progressive processes are
still progressive.

Lemma 3.17. Let X be progressive and � be a stopping time. Then the stopped process

Xt
�(!) :=Xt^�(!)(!);

usually abbreviated as Xt
� =Xt^�, is also a progressive process.

Proof. See Exercise Sheet 4. �

Another nice property of progressive processes is that, under strong assumptions on
the filtration, all entry times are stopping times:

Theorem 3.18. (Debut theorem) Let F be a filtration satisfying the usual conditions,
let X be F-progressive with values in (S;S), and let A2S. Then the entry time �A is a
stopping time.

Proof. We do not prove this result here. It relies on a deep theorem from measure theory,
the so called Section Theorem. For a proof see Dellacherie-Meyer [4], Theorem IV.50, or
Revuz-Yor [23], Theorem I.4.15. �
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An alternative way of stating the Debut theorem is as follows: Let X be a progressively
measurable process in an arbitrary filtration (not necessarily satisfying the usual condi-
tions) and let A2S. Then �A is a stopping time with respect to F+;P, no matter which
probability measure P we choose for completion. This points to the role played by so called
�universal completions� of filtrations.

3.3 Applications to Brownian motion

Definition 3.19. (d-dimensional Brownian motion, F-Brownian motion) Let B=
(B1; :::; Bd) be a stochastic process.

i. B is called a d-dimensional Brownian motion if the Bj, j=1; :::; d, are independent
(1-dimensional) Brownian motions.

ii. Let B be a d-dimensional Brownian motion and let F be a filtration. B is called
a (d-dimensional) F-Brownian motion if it is adapted to F and if for all t> 0 the
process (Bt+s¡Bt)s>0 is independent of Ft.

If B is a Brownian motion, then it is obviously an FB-Brownian motion. The reason
for introducing the notion of an F-Brownian motion is that it is often desirable and indeed
possible to take F larger than FB. Think for example of a two-dimensional Brownian
motion B=(B1;B2). Then B1 is a one-dimensional FB-Brownian motion, although FB is
larger than FB

1
.

Theorem 3.20. (StrongMarkov property of Brownian motion) Let F be a filtration
and let B be a d-dimensional F-Brownian motion. Then for any finite stopping time � the
process B(�)= (B�+t¡B�)t>0 is a d-dimensional Brownian motion and independent of
F�+.

In particular, an F-Brownian motion is also an F+-Brownian motion and a F+;P-
Brownian motion.

Exercise. You might remember the strong Markov property of Markov chains. Does the
Brownian motion also satisfy an analogous version of the strong Markov property?

Proof. The process B(�) is continuous by definition, so it suffices to show that it is a pre-
Brownian motion and independent of F�+. For that purpose it suffices to show that

E [1A1C(B(�))] =P(A)E[1C(B)] (3.3)

for all A2F�+ and all C 2B(Rd)
R+. By Dynkin's � ¡� theorem it suffices to consider
C=ff :R+!Rdjf(t1)2C1; :::; f(tk)2Ckg for k2N and closed C1; :::;Ck�Rd. Moreover,
with C =C1� ��� �Ck we have for all x2Rk

1C(x)= lim
n!1

(1¡n � d(x;C))_ 0;

and since the right hand side is bounded and continuous in x we can replace 1C by
'(Bt1; :::; Btk) for a continuous bounded function '2Cb((Rd)k;R).

Next, we approximate � from above by

�n :=
X
k=0

n2n¡1

(k+2)2¡n1f�2[k2¡n;(k+1)2¡n)g+11f�>ng;
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so that �n takes only finitely many values (for simplicity we write s1< ::: < sm for these
values) and �n> � +2¡n while limn!1�n= � . By Lemma 3.8, vi., we have F�+�F�+2¡n�
F�n, and therefore A\f�n= sjg2Fsj, which leads to

E [1f�n<1g1A'(Bt1
(�n); :::; Btk

(�n))]=
X
j=1

m

E [1f�n=sjg1A'(Bt1
(�n); :::; Btk

(�n))]

=
X
j=1

m

E [1A\f�n=sjg'(Bsj+t1¡Bsj; :::; Bsj+tk¡Bsj)]

=
X
j=1

m

E[1A\f�n=sjg]E['(Bt1; :::; Btk)]

=P(A\f�n<1g)E['(Bt1; :::; Btk)]

where in the penultimate step we used that (Bsj+t¡Bsj)t>0 is a Brownian motion and
independent of Fsj (Proposition 2.11). Recall that � is finite. So letting n tend to infinity,
the left hand side converges to E [1A '(Bt1

(�)
; :::; Btk

(�))] (recall that ' is continuous and
bounded) and the right hand side to P(A)E['(Bt1; :::; Btk)]. �
�

--------------------- End of the lecture on November 13 ---------------------

Remark 3.21. Let � be a not necessarily finite stopping time with P (� <1)> 0. Then
the proof of Theorem 3.20 still shows that

P(A\f� <1g\fB(�)2Cg)=P(A\f� <1g)P(B 2C)

for all A2F�+ and all C 2B(Rd)
R+. Dividing both sides by P(� <1), we get

P(A\fB(�)2Cgj� <1)=P(Aj� <1)P(B 2C);

which shows that under the conditional probability measureP(�j� <1) the process (B�+t¡
B�)t>0 (defined for example as 0 on the set � =1) is a Brownian motion independent
of F�+. In particular, the statement of Theorem 3.20 still holds for stopping times that
are almost surely finite.

Corollary 3.22. (Blumenthal's 0-1 law) Let B be a (d-dimensional) Brownian motion
and let A2F0+B . Then P(A)2f0; 1g.

Intuitively, Blumenthal's 0-1 law says that we cannot learn anything new by peaking
a little bit into the future of the Brownian motion.

Proof. If A2F0+B �F1B , then there exists C 2B(Rd)
R+ such that A= f!:B(!)2Cg.
The strong Markov property applied with � =0 gives

P(A)=P(A\A)=P(A\fB 2Cg)=P(A\fB(0)2Cg)=P(A)P(B 2C)=P(A)2;

and the result follows because the only numbers a with a2= a are f0; 1g �

Exercise. Let B be a Brownian motion and let Ft;1B :=�(Bs: s> t). Let T B=
T
t>0Ft;1

B

be the tail �-algebra of B. Show that every A2T B satisfies P(A)2f0; 1g. Compare this
result to the Kolmogorov 0-1 law (cf. Exercise Sheet 4).

Hint: Consider the time-inversed Brownian motion B~t= tB1/t.

Corollary 3.23. Let B be a Brownian motion. Then with probability 1 we have for all ">0

sup
s2[0;"]

Bs> 0; inf
s2[0;"]

Bs< 0:
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Moreover, if for a 2R we set �a = inf ft > 0: Bt = ag, then �a <1 for all a 2R with
probability 1, so that in particular

¡1= liminf
t!1

Bt< limsup
t!1

Bt=1: (3.5)

At first sight, it is not obvious whether sups2[0;"]Bs is measurable. But recall that B is
continuous, and therefore sups2[0;"]Bs= sups2[0;"]\QBs. In the sequel we will often implic-
itly use this kind of argument when dealing with continuous (or right- or left-continuous)
processes. The last conclusion (3.5) above might not come as a surprise, given our previous
discussions and results around Corollary 2.15 and Theorem 2.16; but it is nice to see how
Blumenthal's 0-1 law provides a short, elegant proof of that fact.

Proof of Corollary 3.23. Notice that

¡ :=
�
! 2
: sup

s2[0;"]
Bs(!)> 0 for all "> 0

�
=
\
n>1

�
! 2
: sup

s2[0;1/n]
Bs(!)> 0

�
=
\
n>N

�
! 2
: sup

s2[0;1/n]
Bs(!)> 0

�
for any fixed N 2N. In particular, ¡2F1/N for all N 2N and so ¡2F0+; by Blumenthal's
0-1 law, P(¡) must be 0 or 1. On the other hand

P (¡)=P
 \
n2N

�
sup

s2[0;1/n]
Bs> 0

�!
= lim
n!1

P
�

sup
s2[0;1/n]

Bs> 0
�

>limsup
n!1

P (B1/n> 0)=
1
2

since B1/n is a centered Gaussian, thus its law is symmetric. Therefore P(¡)= 1.
Replacing B by the Brownian motion ¡B, we get the statement about the infimum.
If there exists a> 0 with �a=1, then sups>0Bs<1. But

P
�
sup
s>0

Bs=1
�

= lim
n!1

P
�
sup
s>0

Bs>n
�

= lim
n!1

P

 
sup
s>0

n¡2Bs>
1
n

!

= lim
n!1

P

 
sup
s>0

B~n¡4s>
1
n

!

= P
�
sup
s>0

B~s> 0
�
=1;

where B~s :=n¡2Bn4s is a new Brownian motion (so that n¡2Bs=B~n¡4s) and we used the
scaling properties of the Brownian motion, as well as the fact that the supremum is taken
over the whole real line [0;+1) (so that computing it over the variable s~=n¡4 s instead
of the original s doesn't change its value).

As before, up to replacing B with ¡B, we find that P(infs>0Bs=¡1) = 1 as well.
Since B is continuous, so that its sup and inf computed on compact time intervals [0; T ]
are necessarily finite (for fixed !), we deduce also the claim about liminf and limsup . �
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Proposition 3.24. (Reflection principle) Let B be a one-dimensional Brownian motion
and let � be a finite stopping time. Then the process

Bt
� :=Bt1ft6� g+(2B� ¡Bt)1ft>� g

is also a Brownian motion.

Proof. By the strong Markov property, both

B(�)=(Bt+� ¡B�)t>0; ¡B(�)=(B� ¡B�+t)t>0

are Brownian motions that are independent of F� . Using that (� ;Bt^�) is F��measurable
(by Corollary 3.16) and thus is independent of these two processes, we get that the �glued�
process

Bt = Bt^� +Bt¡�
(�)

1ft>� g

has the same law as

Bt^� ¡Bt¡�
(�)

1ft>� g = Bt^� +(B� ¡B�+(t¡�))1ft>� g
= Bt1ft6� g+B�1ft>� g+(B� ¡B�+(t¡�))1ft>� g
= Bt

�

and this concludes the proof.
You might (and probably should) feel a bit uncomfortable about plugging t¡ � into B(�)

resp. ¡B(� ) and claiming that we still have the same law. To rigorously see that everything
works, we could first assume that � only takes finitely many values, verify everything there
�by hand� conditioning on the values � can attain, and then use a limiting argument as in
the proof of the strong Markov property. Due to the similarity of such passages with those
in the proof of Theorem 3.20, we omit them here for simplicity.
�

�

Corollary 3.25. Let B be a Brownian motion and let St=maxs2[0;t]Bs. Then

P(St> a)=2P(Bt> a)=P(jBtj> a)
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for all a> 0.

Proof. Exercise Sheet 5. �

Exercise.
i. Do (St)t>0 and (jBtj)t>0 have the same law?

ii. Show that E[e�St]<1 for all �2R and t > 0; show that, for any fixed t > 0, there
exists ��=��(t)> 0 small enough such that E[e�

�jStj2]<1.

Here are simulations of B, jB j and M . We start with jB j, then we draw B so that
we can better compare it with M (note that M is the maximum value of B and not the
maximum value of jB j). Here is jB j:

Python 3.7.4 [/opt/anaconda3/bin/python3]
Python plugin for TeXmacs.
Please see the documentation in Help -> Plugins -> Python

>>> import numpy as np
import matplotlib.pyplot as plt

T, h = 1, 1e-3
n = int(T/h)
k = 3

time = np.arange(0,T+h,h)
dB = np.sqrt(h)*(np.random.randn(k,n))
BM = np.zeros((k,n+1))
BM[:,1:] = np.cumsum(dB, axis=1)
BM_norm = np.abs(BM)
BM_max = np.maximum.accumulate(BM,axis=1)

plt.clf()

for i in range(k):
plt.plot(time,BM_norm[i,:])

pdf_out(plt.gcf())
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Now we plot the Brownian motion B:
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>>> plt.clf()

for i in range(k):
plt.plot(time,BM[i,:])

pdf_out(plt.gcf())

0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.0

0.5

1.0

1.5

And here is M . Compare this with the plot of jB j from above!
>>> plt.clf()

for i in range(k):
plt.plot(time,BM_max[i,:])

pdf_out(plt.gcf())

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25
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>>>

Here is another example of two processes that have the same one-dimensional marginal
distributions but which have different distributions as processes: If X�N (0;1), then for
each fixed t>0 the random variable t

p
X has the same distribution as Bt, but of course

the processes ( t
p

X)t>0 and (Bt)t>0 are nothing alike.
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4 Martingales in continuous time
Throughout this section we fix a filtered probability space (
;F ;F;P).

4.1 Path regularity

Definition 4.1. (Integrable) A stochastic process X is called integrable if E[jXtj]<1
for all t> 0. For p> 0 we call X p-integrable if E[jXtjp]<1 for all t> 0. For p=2 we
also say square-integrable.

Definition 4.2. (Martingale) An adapted, real-valued and integrable process X=(Xt)t>0
is called a

i. martingale if E[XtjFs]=Xs for all 06 s6 t;
ii. supermartingale if E[XtjFs]6Xs for all 06 s6 t;
iii. submartingale if E[XtjFs]>Xs for all 06 s6 t.

Clearly, X is a martingale if and only if it is both a submartingale and a supermartin-
gale; moreover X is a supermartingale if and only if ¡X is a submartingale. Finally,
notice how the martingale property may be rephrased as E[Xt¡XsjFs]=0 for all 06 s6 t
(similarly for super- and sub-martingales, up to replacing = with 6 and >).

In the following we will state some of the next results only for supermartingales, but
by the above similar variants can be immediately inferred for submartingales as well.

Example 4.3. (Brownian martingales) Let B be an F-Brownian motions. Then:

i. B is a martingale:

E[BtjFs] =E [Bt¡BsjFs] +Bs=E [Bt¡Bs]+Bs=Bs:

ii. Xt=Bt2¡ t, t> 0, is a martingale:

E[XtjFs] =E [(Bt¡Bs)2+2(Bt¡Bs)Bs+Bs2jFs]¡ t=(t¡ s)+Bs2¡ t=Xs:

iii. For �2R the process Yt= e�Bt¡�
2t/2, t> 0, is a martingale:

E[YtjFs]=E[e�(Bt¡Bs)jFs] e�Bs¡�
2t/2=E[e�(Bt¡Bs)] e�Bs¡�

2t/2

=e�
2(t¡s)/2 e�Bs¡�

2t/2=Ys;

we used the formula E[e�U]= e�
2�2/2 for the Laplace transform of U �N (0; �2).

Similarly (up to extending the definition of martingale to the complex-valued
processes), for any �2R, Yt= ei�Bt+�

2t/2 is a martingale.

iv. If B, B~ are independent F-Brownian motions, then Ut=BtB~t, t>0, is a martingale:

E[UtjFs] =E [(Bt¡Bs)(B~t¡B~s)+ (Bt¡Bs)B~s+Bs(B~t¡B~s)+BsB~sjFs]=Us:

---------------------- End of the lecture on November 14 ----------------------

v. Let f 2L2(R+) and set Zt=
R
0

t
f(s)dBs=

R
0

1
1[0;t](s)f(s)dBs, where the right hand

side is the Wiener integral; then Z is a martingale. Indeed, first assume that f(t)=P
k=0
n¡1xk1(tk;tk+1)(t), i.e. f 2E in the notation of Lemma 1.12. Then

Zt=
X
k=0

n¡1

xk

Z
0

1
1[0;t](s)1(tk;tk+1](s)dBs=

X
k=0

n¡1

xk(Btk+1^t¡Btk^t);
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which follows by considering the cases t < tk, t2 [tk; tk+1] and t > tk+1 separately.
Therefore,

E[ZtjFs] =
X
k=0

n¡1

xkE[Btk+1^t¡Btk^tjFs]

=
X
k=0

n¡1
xk(Btk+1^s¡Btk^s)=Zs:

For general f 2 L2(R+) there exists a sequence (fn)n � E such that kfn1[0;t] ¡
f1[0;t]kL2(R+)! 0, and since the Wiener integral is an isometry we get that Ztn=R
0

t
fn(s)dBs converges in L2(R+) to Zt, and we just saw that Zn is a martingale for

each n. Since we can pull the L2 limit into the conditional expectation, we get that
Z is a martingale.

Example 4.4. (Poisson martingales) Let N be a Poisson process with intensity �>0.
Then:

i. (Nt¡�t)t>0 is a martingale in the filtration F=FN .

ii. LetXt=
P

k=1
Nt Yk be a compound Poisson process, where (Yk)k2N is an i.i.d. sequence

of integrable random variables that is independent of N and we set m=E[Y1].
Then the compensated compound Poisson process X~t :=Xt¡ �mt is a martingale
w.r.t. its canonical filtration (also, note that FX=FX

~). In particular, X is a mar-
tingale if m=0.

iii. If additionally a=E[Y12]<1, then in the setting of the Point ii., Mt := jX~tj2¡�at
is also a martingale w.r.t. FX.

All of the above statements were part of Exercise Sheet 3 (for point i. this follows from N
being a Lévy process with E[Nt] =�t).

Exercise.

i. Let N be a Poisson process with intensity �> 0 and let �2R. Show that

Mt= exp(�Nt¡�t(e�¡ 1)); t> 0;
is a martingale.

ii. Let N1; N2 be independent Poisson processes of the same intensity. Show that
N1¡N2 is a martingale in the filtration F(N1;N2).

Remark 4.5. If (Xt)t>0 is a martingale, then by the tower property of conditional expecti-
ation we immediately have E[Xt]=E[X0] for all t>0. Similarly, if X is a supermartingale
(respectively submartingale) then t 7!E[Xt] is decreasing (resp. increasing).

Recall conditional Jensen's inequality (e.g. from Stochastics II): given a real-valued
random variable Z and a convex function ':R!R such that Z, '(Z) are integrable, it
holds

'(E[Z jG])6E['(Z)jG]
for any �-algebra G �F .
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Remark 4.6. It follows from conditional Jensen's inequality that:

i. If X is a martingale, ':R!R is convex and ('(Xt))t>0 is integrable, then '(X)
is a submartingale.

ii. If X is a submartingale, ' is convex and increasing, and '(X) is integrable, then
'(X) is a submartingale.

iii. In particular, jX jp is a submartingale if X is a p-integrable martingale and p> 1,
and X+=X _ 0 is a submartingale if X is a submartingale.

Exercise. Prove/convince yourself of the above statements.

A priori, martingales have no path regularity. Our first aim is to show that they admit
nice modifications. In general, in the upcoming results, our strategy will be to leverage
as much as possible on the results for discrete-time martingales you have already seen in
Stochastics-II, and transfer them to the continuous-time case. To that end, let us recall
some discrete-time results first.

Definition 4.7. (Upcrossings) Let I �R+ and f : I!R. For a < b, the number of
upcrossings of f across the interval [a; b] in I is the supremum over all n for which there
exist times sk; tk2 I, k=1; :::; n, such that s1<t1<s2<t2<:::<sn<tn with f(sk)6a and
f(tk)> b for all k=1; :::; n. We denote it with

U([a; b]; I; f):

Lemma 4.8. (Doob's upcrossing inequality) Let (Xn)n2N0 be a discrete time super-
martingale. Then we have for all a< b2R

E[U([a; b]; f0; :::; ng;X)]6 E[(Xn¡ a)¡]
b¡ a ; E[U([a; b];N0;X)]6 sup

n2N

E[(Xn¡ a)¡]
b¡ a :

Lemma 4.9. (Doob's inequalities, discrete time case) Let (Xn)n2N0 is a discrete
time martingale, then for all �> 0 and n2N:

P

�
max

k2f0;:::;ng
jXkj>�

�
6 1
�
E[jXnj]:

Moreover for all p2 (1;1) we have

E

�
max

k2f0;:::;ng
jXk jp

�
6
�

p
p¡ 1

�p
E[jXnjp]:

It is also useful to shortly recall the concept of uniform integrability of a family of
random variables and its properties.

Definition 4.10. A family of real-valued random variables (Yj)j2J is uniformly inte-
grable if

lim
M!1

sup
j2J

E[jYj j1fjYj j>M g]= 0:

Remark 4.11. Recall the following facts about uniform integrability:

i. If (Yj)j2J is uniformly integrable, then it is bounded in L1: supj2JE[jYj j]<1; the
converse is not true.
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ii. If (Yj)j2J is bounded in Lp for some p > 1, i.e. supj2J E[jYj jp] <1, then it is
uniformly integrable.

iii. Given a sequence (Yn)n2N, Yn! Y in L1 if and only if Yn! Y in probability and
(Yn)n2N is uniformly integrable.

iv. If Y 2 L1 and (Gj)j2J is a family of �-algebras, then (E[Y jGj])j2J is uniformly
integrable.

With these preparations, we can now show that martingales have càdlàg modifications,
the proof of which crucially relies on Lemma 4.8.

Theorem 4.12. Let X be a martingale and assume that F satisfies the usual conditions.
Then X has an adapted càdlàg modification which still is a martingale.

Proof. (The proof was only sketched in the lectures and is not examinable)

1. We first show that X restricted to Q+ almost surely admits limits from the left
and right: Let k 2N and let (In)n2N be an increasing sequence of finite subsets of
Q+\ [0; k] such that

S
n In=Q+\ [0; k]. We also assume that k2In for all n. Then

by the monotone convergence theorem, together with Doob's upcrossing lemma, for
all a; b2R, a<b and all n2N it holds that

E [U([a; b];Q+\ [0; k];X)] = lim
n!1

E[U([a; b]; In;X)]6
E[(Xk¡ a)¡]

b¡ a <1:

Similarly, by applying Lemma 4.9 and passing to the limit, we get with Doob's
maximal inequality for any �> 0:

P
�

sup
t2Q+\[0;k]

jXtj>�
�
= lim
n!1

P
�
sup
t2In

jXtj>�
�
6 E[jXk j]

�
:

Therefore, there exists a null set N such that for all ! 2N c

U([a; b];Q+\ [0; k];X(!))<1 for all a<b2Q; k2N;

and

sup
t2Q+\[0;k]

jXt(!)j<1 for all k 2N:

From here it is not hard to see that for ! 2N c the limits

Xt+(!) := lim
s#t;s2Q+

Xs(!)2R and Xt¡(!) := lim
s"t;s2Q+

Xs(!)2R

exist for all t> 0 respectively t > 0.

2. With the null set N and Xt+ as in step i. we define

X~t(!)=
�
Xt+(!); ! 2N c;
0 , ! 2N:

X~ is right-continuous by construction, and it also has left limits: For ! 2N this is
clear, so let ! 2N c, let tn"t, and consider for all n2N a point sn2 (tn; t)\Q such
that jXtn+(!)¡Xsn(!)j< 1/n. Then

lim
n!1

X~tn(!)= lim
n!1

Xtn+(!)= lim
n!1

Xsn(!) =
sn"t;(sn)�Q

Xt¡(!):
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Moreover, X~ is adapted because our filtration satisfies the usual conditions. The
family

(Xs)s2[t;t+1]\Q+
=(E[Xt+1jFs])s2[t;t+1]\Q+

is uniformly integrable, because it is given by conditional expectations of Xt+12L1
(cf. Remark 4.11-iv.). Therefore, we get almost surely

X~t=E[X~tjFt]=E
h

lim
s#t;s2Q+

Xs
������Fti= lim

s#t;s2Q+

E[XsjFt]= lim
s#t;s2Q+

Xt=Xt;

i.e. X~ is a modification of X. �

Remark 4.13. More generally, one can show that any supermartingale X in a filtration
satisfying the usual conditions and for which t 7!E[Xt] is right-continuous has a càdlàg
adapted modification; see Theorem 3.17 of Le Gall [16].

Exercise. The condition that t 7!E[Xt] is right-continuous is necessary: Find a super-
martingale which does not have a càdlàg modification.

--------------------- End of the lecture on November 20 ---------------------

Theorem 4.14. (Martingale convergence theorem) Let X be a càdlàg supermartin-
gale with supt>0E[Xt

¡]<1.
Then there exists a random variable X12L1 with limt!1Xt=X1 almost surely.
If (jXtjp)t>0 is uniformly integrable, for p> 1, then Xt also converges in Lp to X1.

Remark 4.15. Notice that since X is a supermartingale,

sup
t>0

E[Xt
¡]<1 , sup

t>0
E[jXtj]<1:

One implication is obvious; for the other, we have E[Xt
+]¡E[Xt

¡]=E[Xt]6E[X0], so that

sup
t>0

E[Xt
+]6 sup

t>0
E[Xt

¡] +E[X0] ) sup
t>0

E[jXtj]6 sup
t>0

E[Xt
+] + sup

t>0
E[Xt

¡]<1:

Proof. By an approximation argument of Q+ via finite sets we get (similarly as in The-
orem 4.12) for all a<a0<b 0<b2R:

E[U([a; b];R+;X)]6E[U([a0; b 0];Q+;X)]6
1

b 0¡ a0
�
sup
t>0

E[Xt
¡] + ja0j

�
<1;

where the first inequality uses that X is càdlàg. So almost surely U([a; b];R+;X)<1 for
all a; b2Q with a< b, which shows that Xt converges almost surely to a limit X1 with
values in [¡1;1]. Since X1 is also the limit of (Xn)n2N, we get X12L1 from the discrete
time version of the martingale convergence theorem (Stochastics II).

Suppose now that (jXtjp)t>0 is uniformly integrable; then jXtjp!jX1jp P-a.s. (thus
also in probability), which together with Remark 4.11-iii. implies jXtjp! jX1jp in L1,
which in turn implies that Xt!X1 in Lp.
�

�
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Exercise. Show that any positive càdlàg supermartingale almost surely converges.

Example 4.16.

i. Without a condition like supt>0E[Xt
¡]<1, convergence can fail: For example, the

Brownian motion almost surely does not converge because it is unbounded from
below and from above.

ii. If X is a martingale, then E[Xt]=E[X0] for all t> 0. But even if X converges, we
may have E[X1]=/ E[X0]. Consider for example Xt= exp (Bt¡ t/2), t>0, which is
a positive martingale (cf. Example 4.3-iii.) and therefore it almost surely converges.
We know from Corollary 2.15 that for �2 (1/2;1) and for almost every !2
 there
exists C(!)> 0 with jBt(!)j6C(!)t� for all t> 0, so that

06 limsup
t!1

Xt(!)6 limsup
t!1

exp (C(!)t�¡ t/2)= 0;

while E[Xt]= 1 for all t> 0.

Theorem 4.17. For a càdlàg martingale X the following conditions are equivalent:

i. X is uniformly integrable (we say X is a uniformly integrable martingale);

ii. Xt converges almost surely and in L1 to a limit X1 as t!1;

iii. there exists Y 2 L1 with Xt = E[Y jFt] for all t> 0 (we say that X is a closed
martingale).

In that case we can take Y =X1, and for general Y we always have X1=E[Y jF1].

Proof. This follows line-by-line by the same arguments as in the discrete time case, see
Stochastics II.

�
Remark 4.18. Given an integrable r.v. Y and a filtration F, Xt=E[Y jFt] always defines
a martingale, by the tower property of conditional expectation; moreover X is uniformly
integrable, by Remark 4.11-iv. If additionally F satisfies the usual assumptions, then we
can invoke Theorem 4.12 to deduce that, up to a modification, X has càdlàg paths.

Example 4.19. Let (Xt)t>0 be a martingale and fix a deterministic T 2 (0;+1); set

Xt
T =Xt^T =Xt 1t6T +XT1t>T :

It's easy to check that XT is also a martingale, that it is uniformly integrable, since
Xt=E[XT jFt] for all t> 0.

�

4.2 Martingale inequalities and stopping theorems
Here we transfer some useful properties of discrete time martingales to continuous time.

Theorem 4.20. (Doob's martingale inequalities) Let T 2 [0;+1) and �> 0.

i. If X is a càdlàg submartingale, then

P
�

sup
t2[0;T ]

Xt>�
�
6 1
�
E[XT

+]; P
�
sup
t>0

Xt>�
�
6 1
�
sup
t>0

E[Xt
+]:
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ii. If X is a càdlàg martingale, then

P
�

sup
t2[0;T ]

jXtj>�
�
6 1
�
E[jXT j]; P

�
sup
t>0

jXtj>�
�
6 1
�
sup
t>0

E[jXtj];

iii. If X is a càdlàg martingale, then for all p2 (1;1)

E
�

sup
t2[0;T ]

jXtjp
�
6
�

p
p¡ 1

�p
E[jXT jp]; E

�
sup
t>0

jXtjp
�
6
�

p
p¡ 1

�p
sup
t>0

E[jXtjp]:

Proof. Inequalities i.�ii. for T =1 are obtained by sending T!1 in the corresponding
finite time inequalities, and applying the monotone convergence theorem. There is a small
subtlety though, because we may have supt>0Xt=� and yet supt2[0;T ]Xt<� for all T >0;
we can circumvent this with a small trick. Assume we have proved the finite-time statement
in i.; then for any "2 (0; 1), we have:

P
�
sup
t>0

Xt>�
�
6 P

�
sup
t>0

Xt>�(1¡ ")
�
= lim
T!1

P
�

sup
t2[0;T ]

Xt>�(1¡ ")
�

6 1
�(1¡ ")supt>0

E[Xt
+]:

Since the left hand side does not depend on ", we can then send "! 0 to get the claim.
The argument works similarly for ii.

To derive the inequality i. in finite time, let (In)n2N be an increasing sequence of finite
subsets of Q+\ [0; T ] such that

S
n2NIn=Q+\ [0; T ] and such that T 2 In for all n. From

the �-continuity of P and the right-continuity of X, we get

P
�

sup
t2[0;T ]

Xt>�
�
= lim
n!1

P
�
sup
t2In

Xt>�
�
6 lim
n!1

1
�
E[XT

+] = 1
�
E[XT

+];

where we applied Doob's inequality in discrete time, Lemma 4.9. With the same argument
as above, we can replace P (supt2[0;T ]Xt>�) by P (supt2[0;T ]Xt>�) on the left hand side.

If X is a càdlàg martingale, then X~t= jXtj is a càdlàg submartingale, so that ii. follows
from i. applied to X~ .

The inequalities in iii. are obtained using similar arguments, relying on Lemma 4.9 and
the monotone convergence theorem (instead of �-continuity). �

Exercise. Show that in each of the infinite-time inequalities in Theorem 4.20 we have

sup
t>0

E['(Xt)] = lim
t!1

E['(Xt)]:

Hint: recall Remark 4.6.

Remark 4.21. The constant
�

p

p¡ 1

�p
in Doob's maximal Lp-inequality (inequality iii. in

Theorem 4.20) is optimal. Notice that it diverges for p! 1; indeed, the inequality is false
for p=1 and we cannot control E[supt2[0;T ] jXtj] in terms of E[jXT j] (the corresponding
inequality already fails in finite discrete time).

To control the supremum, one needsXT to belong to L logL: if X is a càdlàg martingale,
then it holds

E
�

sup
t2[0;T ]

jXtj
�
6 e

e¡ 1(1+E[jXT jlogjXT j])
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see for instance Exercise II.1.16 in [23].

If � is a stopping time and Xt almost surely converges to X1 as t!1, then we define

X�(!) :=1f�(!)<1gX�(!)(!)+1f�(!)=1gX1(!):

Theorem 4.22. (Optional Sampling Theorem) Let X be a càdlàg martingale and let
�6 � be stopping times. Assume that either

i. � 6C <1 almost surely, where C > 0 is a deterministic constant;

ii. or X is uniformly integrable.

Then X� and X� are in L1 and

E[X� jF�]=X�:

We momentarily postpone the proof of Theorem 4.22 (similarly for Corollary 4.24
below) in order to present some applications of interest to Brownian motion (cf. Corol-
lary 4.25).

Theorem 4.23. Let X be a positive càdlàg supermartingale (which almost surely converges
to some X1 by Proposition 4.14) and let �6 � be stopping times. Then X� and X� are in
L1 and

E[X� jF�]6X�:

Proof. The proof is similar to the one of Theorem 4.22, but in some places a bit more
technical, so we skip it; for a reference, see Theorem 3.25 of [16]. �

Corollary 4.24. (Stopping theorem) Let X be a càdlàg martingale and let � be a
stopping time. Then the stopped process Xt

� =Xt^�, t> 0, is a càdlàg martingale. If X is
uniformly integrable, then X� is as well and we have

Xt
� =E[X� jFt] 8t> 0: (4.1)

�

Corollary 4.25. Let B be a Brownian motion and write �x= infft>0:Bt=xg for x2R.
Let a; b> 0. Then

P(�¡a<�b)=
b

a+ b
; P (�¡a>�b)=

a
a+ b

:

Proof. By the stopping theorem B�¡a^�b is a martingale, which has uniformly bounded
trajectories due to the very definition of �¡a ^ �b: it holds supt>0 jBt

�¡a^�bj 6 jaj _ jbj;
therefore B�¡a^�b is uniformly integrable. By Corollary 3.23, the stopping time �¡a^ �b is
almost surely finite and we get

0=E[B0
�¡a^�b] =E[B�¡a^�b]

=E[B�¡a1�¡a6�b+B�b1�a>�b]
=¡aP (�¡a6 �b)+ bP (�¡a>�b)

Now observe that P (�¡a6 �b)= 1¡P (�¡a>�b), and therefore

0=¡a(1¡P (�¡a>�b))+ bP (�¡a>�b)= (a+ b)P (�¡a>�b)¡ a;
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from where the claim follows (notice that by definition �¡a=/ �b). �

--------------------- End of the lecture on November 21 ---------------------

Proof of Theorem 4.22. It suffices to show ii., because then we obtain i. by considering
the uniformly integrable martingale (Xt^C)t>0 (cf. Example 4.19).

To show ii., define for n2N

�n=
X
k=0

1

(k+1) 2¡n1f�2[k2¡n;(k+1)2¡n)g+11f�=1g

and similarly for �n. Then �n and �n are stopping times and decrease to � and � , respec-
tively, as n!1. It is not hard to see that �n and �n are also stopping times with
respect to the discrete time filtration (Fk2¡n)k>0; moreover, the �-algebra F�n defined
w.r.t. (Fk2¡n)k>0 coincide with the one defined w.r.t. (Ft)t>0, similarly for �n. We can
therefore apply the discrete time Optional Sampling Theorem for uniformly integrable
martingales (Stochastics II) to obtain

E[X�njF�n] =X�n:

Conditioning both sides on F� and using that �6�n, so that F��F�n, we obtain

E[X�njF�] =E[E[X�njF�n]jF�] =E[X�njF�]:

Since X is right-continuous, (X�n)n converges almost surely to X�. By the discrete time
stopping theorem we know that X�n=E[X1jF�n], and therefore (X�n)n is uniformly inte-
grable and the convergence also holds in L1. Similarly, (X�n)n converges in L1 to X�, and
therefore

E[X� jF�]= lim
n!1

E[X�njF�]= lim
n!1

E[X�njF�]=E[X�jF�]=X�:

Note that X� 2L1 as we just showed that it is the limit in L1 of the sequence X�n; similarly
for X�. �

Exercise. Which parts of the proof of Theorem 4.22 also work for supermartingales,
and where did we use the martingale property of X (as opposed to the supermartingale
property)? Compare with the statement of Theorem 4.23.

Proof of Corollary 4.22. Since X is càdlag, X� is also càdlàg due to its definition.
First assume that X is uniformly integrable; note that, once we prove (4.1), both

martingale and uniform integrability properties follow from Remark 4.18 (and the fact that
X� 2L1, by Theorem 4.22). We have

E[X� jFt] =E[X� 1�6tjFt] +E[X� 1�>tjFt]
=X� 1�6t+E[X�_t1�>tjFt]
=X� 1�6t+E[X�_t jFt]1�>t

where in the second step we used that X� 1�6t is Ft-measurable (cf. Exercise Sheet 4)
and similarly in the last step that 1�>t is Ft-measurable. Since � _ t is a stopping time,
� _ t> t, and X is uniformly integrable, by Theorem 4.22 we get

E[X� jFt] =X� 1�6t+Xt 1�>t=Xt^� =Xt
�:
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Now let X be any càdlàg martingale and fix t> 0. Then X t is a uniformly integrable
martingale (cf. Example 4.19), (X t)� =X t^�; so for any s6 t we get

E[Xt
� jFs] =E[Xt

t^� jFs] =Xst^� =Xs�: �

Exercise. (A random walk embedded in Brownian motion, this exercise is a bit
technical) Let B be a Brownian motion and consider the stopping times �0 := 0 and

�n+1 := inf ft> �n: jBt¡B�nj=1g= inf ft> 0:1ft>�ngjBt¡B�nj=1g:

Show that Xn :=B�n, n2N0, is a simple symmetric random walk.

We skipped this remark in the lectures: With the help of the Skorokhod embedding
theorem, one can show that for any centered and square-integrable random walk (Yn)n2N0

(i.e. Yn is the sum of i.i.d. centered and square-integrable random variables) there exist inte-
grable stopping times (�n)n2N0 such that (B�n)n2N0 has the same distribution as (Yn)n2N0.
Once this result is shown, it leads to a relatively simple proof of Donsker's invariance
principle. See for example Chapters 1.10 and 1.11 of Liggett [17].

5 Continuous semimartingales
We saw that the Brownian motion is nowhere differentiable. But we would like to make
sense of stochastic differential equations such as

@tYt= b(Yt)+�(Yt)@tBt; Y0= y0:

One way of doing so is to integrate both sides from 0 to t, formally obtaining

Yt= y0+
Z
0

t

b(Ys)ds+
Z
0

t

�(Ys)dBs: (5.1)

In order to make sense of the equation, we construct the stochastic integral
R
Hs dXs for

suitable processes H and X; in particular, we would like not only to be able to make sense
of
R
HsdBs, but also of objects of the form

R
HsdYs for processes Y which are themselves

solutions to (5.1).
A good class of integrators X turn out to be semimartingales, i.e. processes X which

can be decomposed as X=M +A, whereM is a local martingale and A has paths of finite
variation. In this lecture we will restrict our attention to continuous semimartingales, and
we start by studying some basic properties of semimartingales.

Assumption: from now on until the end of the lecture notes we will assume that our
filtration F satisfies the usual conditions � unless explicitly stated otherwise. It is possible
(and sometimes crucial) to develop the theory that follows without this assumption, see
e.g. Jacod-Shiryaev [13], Section I.4, where the filtration is only assumed to be right-
continuous (which does not change too much), or von Weizsäcker-Winkler [28], Chapters 5
and 6, where not even right-continuity is needed (for this we have to be very careful). As
the material is already technical enough as it is, we prefer to simplify our life as much as
possible and thus we work under the usual conditions.

Let us also stress that, in the Brownian case, by Blumenthal's 0-1 law (Corollary 3.22),
FtB and Ft+B can only differ by trivial sets, i.e. having either probability 0 or 1. In particular,
if we take the completion of FB w.r.t. the Wiener measure P, it is automatically right-
continuous.

Recall the notation for the increment of X from s to t: Xs;t :=Xt¡Xs.
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5.1 Processes of finite variation

Definition 5.1. (Finite variation, total variation) Let T 2 (0;+1). We say that a
continuous function a: [0; T ]!R is of finite variation on [0; T ], i.e. a 2 TV([0; T ]), if
a(0)=0 and its total variation on [0; T ] is finite:

kakTV([0;T ]) := sup

(X
k=0

n¡1
ja(tk+1)¡ a(tk)j:n2N; 0= t0< ::: < tn=T

)
<1:

We say that a continuous function a:R+!R is of finite variation, notation a2TV(R+),
if aj[0;T ] is of finite variation for all T 2 (0;1). In that case we write

V (a)(t) := kakTV([0;t]); 8t> 0:

Example 5.2.

i. Any a2C1(R+) with a(0)=0 is of finite variation: If 0= t0< :::< tn= t, thenX
k=0

n¡1

ja(tk+1)¡ a(tk)j6
X
k=0

n¡1

max
s2[tk;tk+1]

ja0(s)j � jtk+1¡ tk j6 max
s2[0;t]

ja0(s)j � t:

ii. More generally, any absolutely continuous a:R+!R with a(0) = 0 is of finite
variation, becauseX
k=0

n¡1

ja(tk+1)¡ a(tk)j=
X
k=0

n¡1 ��������Z
tk

tk+1
a0(s)ds

��������6X
k=0

n¡1 Z
tk

tk+1
ja0(s)jds6

Z
0

t

ja0(s)jds:

iii. Any increasing function a:R+!R with a(0)=0 is of finite variation, because

X
k=0

n¡1
ja(tk+1)¡ a(tk)j=

X
k=0

n¡1
(a(tk+1)¡ a(tk))= a(t)¡ a(0)= a(t):

iv. By the previous example, there exist continuous functions a of finite variation which
are not absolutely continuous: one example is the devil's staircase, which is constant
outside of the Cantor set (which has Lebesgue measure 0).

v. If a; b are of finite variation, then also a+ b is of finite variation (follows from the
triangle inequality); if a is of finite variation, so is �a for any �2R. In particular,
TV([0; T ]) is a vector space.

The last two examples together show that if a+; a¡ are increasing functions starting
from 0 and a= a+¡ a¡, then a is of finite variation. Next, we will see that the existence
of such a decomposition is also necessary for a to be of finite variation.

Proposition 5.3. Let a 2 C(R+) be such that a(0) = 0. The following conditions are
equivalent:

i. a2TV(R+).

ii. There exist two measures �+ and �¡ on B(R+) such that ��([0; T ])<1 for all
T > 0, such that �+ and �¡ are mutually singular (i.e. there exists D+ 2 B(R+)
with �+= �+(� \D+) and �¡(D+)= 0), and such that

a(t)= �([0; t]) := �+([0; t])¡ �¡([0; t]):

iii. a can be written as the difference of two increasing functions a+ and a¡, a(t) =
a+(t)¡ a¡(t).
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In this case �+ and �¡ are unique, we write j�j= �++ �¡, and we have

j�j([0; t])=V (a)(t):

We call � the (signed) measure associated with a.

Remark 5.4. Note that, since a is continuous, and �+ and �¡ are mutually singular, they
must be non-atomic: ��(ftg)= 0 for all t> 0.

Proof. (Sketch of proof):

� i. ) ii.: One can show that V (a) is continuous, see e.g. Friz-Victoir [10], Proposi-
tion 1.12. Define

a+(t) :=
1
2
(V (a)(t)+ a(t)); a¡(t) :=

1
2
(V (a)(t)¡ a(t)):

Then

a(t)= a+(t)¡ a¡(t); t> 0;

and a� are positive, increasing continuous functions and therefore they are the
�distribution functions� of two measures on B(R+), determined via

�+([0; t]) = a+(t); �¡([0; t]) = a¡(t):

By construction we have a(t) = �+([0; t])¡ �¡([0; t]) and one can show that �+
and �¡ are mutually singular and the unique mutually singular measures with this
property.
(Sketch of the argument, you may skip this): Use the Jordan decomposition
�= �+¡ �¡ of the signed measure � := �+¡ �¡, where �� are mutually singular by
definition of the Jordan decomposition, and use that

(�++ �¡)((s; t]) =V (a)(t)¡V (a)(s)6 (�++ �¡)((s; t])6 (�++ �¡)((s; t]);

where the second inequality holds by definition of V (a) as a supremum, and the last
inequality holds because the Jordan decomposition is minimal. Since also �+¡�¡=
�+¡ �¡ we get ��= ��, and then that �+ and �¡ are mutually singular because
�+ and �¡ are mutually singular.
Uniqueness: Also follows from the Jordan decomposition.

� ii. ) iii.: Set a�(t) := ��([0; t]).

� iii. ) i.: This is exactly the discussion in Example 5.2-iii-iv. �

Definition 5.5. (Lebesgue-Stieltjes integration) Let a2C(R+)\TV(R+) and let h:
R+!R be measurable with

R
0

T jh(t)jj�j(dt)<1 for all T > 0. Then we defineZ
0

t

h(s)da(s) :=
Z
[0;t]

h(s)�(ds)=
Z
[0;t]

h(s)�+(ds)¡
Z
[0;t]

h(s)�¡(ds); t> 0;
and Z

0

t

h(s)dV (a)(s) :=
Z
[0;t]

h(s)j�j(ds); t> 0:

Both
R
0

�
h(s)da(s) and

R
0

�
h(s)dV (a)(s) are continuous functions (by dominated convergence

and the atomless property of j�j), have finite variation and the associated measures are
h� and hj�j.
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--------------------- End of the lecture on November 27 ---------------------

Example 5.6. If a2C1(R+), thenZ
0

t

h(s)da(s)=
Z
0

t

h(s)a0(s)ds;
Z
0

t

h(s) dV (a)(s)=
Z
0

t

h(s)ja0(s)jds:

Indeed, for h=1(u;v] this follows from the fundamental theorem of calculus, and for more
general h we apply the usual approximation arguments (�measure-theoretic induction�, e.g.
the monotone class theorem, cf. Theorem A.11).

Exercise. Let a2C(R+)\TV(R+) and let h2C(R+). Show that the integral
R
0

t
h(s)da(s)

can be computed as limit of Riemann sums:Z
0

t

h(s)da(s)= lim
n!1

X
k=0

n¡1

h

�
kt
n

��
a

�
(k+1)t

n

�
¡ a
�
kt
n

��
:

Now we introduce randomness:

Definition 5.7. (Process of finite variation) A stochastic process A= (At)t>0 is a
process of finite variation if it is adapted, continuous, and A(!)2TV(R+) for all !2
. In
that case we write A2A. If furthermore A(!) is increasing for all !2
, we write A2A+.

If A2A, then V (A) is a continuous increasing process and also adapted, so V (A)2A+:
Indeed, it is possible (exercise!) to show that

V (A)t= lim
n!1

X
k=0

n¡1 ������Ak+1

n
t
¡Ak

n
t

������ 8t> 0

and for fixed n the sum on the right hand side is obviously Ft�measurable.

Proposition 5.8. Let A 2A and let H be a progressively measurable process such that
almost surely Z

0

T

jHsjdV (A)s<1 8T > 0:
Then�Z

0

t

HsdAs

�
(!) :=

8>><>>:
Z
0

t

Hs(!)dAs(!) if
Z
0

T

jHsj(!)dV (A)s(!)<1 for all T > 0;

0 otherwise;

defines (!-wise) a (progressively measureable) process of finite variation.

Proof. Note that by Lemma 3.14 the trajectories of H are measurable, so both the con-
dition

R
0

t jHsj(!)dV (A)s(!)<1 and the term
R
0

t
Hs(!)dAs(!) make sense. By definition,

the trajectories

t 7!
�Z

0

t

HsdAs

�
(!)

are continuous finite variation functions for all !, so we only have to show that
R
0

�
HsdAs is

adapted. Upon modifying H on a null set (recall that our filtration satisfies the usual con-
ditions!) we may assume that

R
0

t jHsj(!)dV (A)s(!)<1 and (H�A)t(!) =
R
0

t
Hs(!)dAs(!)

for all ! 2
 and all t> 0.
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Fix t > 0. We first show that ! 7!
R
0

t
1B(!; s)dAs(!) is Ft-measurable for all B 2

Ft
B([0; t]). For B=B1� (a; b] with B12Ft and 06a<b6 t or B=B1�f0g this is clear.
But these sets are stable by intersection and they generate Ft
B([0; t]). Moreover, the
set of all B 2Ft
B([0; t]) for which ! 7!

R
0

t
1B(!; s)dAs(!) is Ft-measurable is a �-system

since measurability is preserved under pointwise convergence. Therefore, this holds for all
B 2Ft
B([0; t]). By the usual approximation argument (�measure-theoretic induction�,
first consider H =

P
k=1
n xk1Bk, then positive H, then differences of positive functions;

equivalently the monotone class theorem) it follows that, for all progressive H such thatR
0

t jHsjdV (A)s<1, the random variable ! 7!
R
0

t
Hs(!)dAs(!) is Ft-measurable. �

Remark 5.9. (Associativity of the Lebesgue-Stieltjes integral) If, for progressive
H;G, almost surely

R
0

t jHsjdV (A)s<1 and
R
0

t jGsHsjdV (A)s<1 for all t>0, then we haveZ
0

�
Gsd

�Z
0

s

Hr dAr

�
=
Z
0

�
GsHsdAs;

because
R
0

�
HsdAs is a finite variation process associated to the measure Hd�, where � is

the measure associated to A.

Exercise. Let A(!)2C1 for all !, and let G(!);H(!) be continuous for all !. Verify the
identity

R
0

�
Gsd(

R
0

�
HsdAs)=

R
0

�
GsHsdAs using only elementary (Analysis I) arguments and

Example 5.6.

5.2 Brownian motion and prelude to stochastic integration
Disclaimer: from now on we will always (unless specified) consider processes (Xt)t>0
with continuous time. Whenever talking about continuous martingales, we therefore mean
martingales with P-a.s. continuous paths, not just martingales indexed over continuous
time t2 [0;1).

Let now B be a Brownian motion. If we would have B 2A, then we could use the
results from the last section to construct

R
0

t
HsdBs for suitable integrands H. However, we

have the following negative result, informing us that there is no hope to accomplish this
strategy for any continuous martingale!

Lemma 5.10. (Continuous finite variation martingales are constant) Let M 2A
be a continuous martingale of finite variation. Then almost surely Mt=0 for all t> 0.

To prove the lemma, we first need a couple of remarks.

Remark 5.11. Let M be a square integrable martingale, then it enjoys the property of
orthogonality of increments: for any t1< t2< t3<t4, it holds

E[(Mt4¡Mt3)(Mt2¡Mt1)] =E[E[(Mt4¡Mt3)(Mt2¡Mt1)jFt2]]
=E[(Mt2¡Mt1)E[(Mt4¡Mt3)jFt2]]
=0:

Exercise. Let A be a process of finite variation, � be a stopping time, At� =At^� be the
stopped process. Show that V (A�)t=V (A)t^� =V (A)t�.

Proof of Lemma 5.10. Since M 2A, the process V (M) is continuous and V (M)0=0.
Without loss of generality, we may assume M and V (M) to be uniformly bounded.

Indeed, if they weren't, define the stopping time �m= inf ft> 0:V (M)t>mg with m2N;
note that

jMt
�mj6V (M �m)t=V (M)t

�m6m 8t> 0;
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where we used the above exercise. By the stopping theorem,M �m is a continuous, bounded
martingale of finite variation; one we show the statement forM �m, so thatM �m�0, we can
send m!1 (note that P-a.s. �m"+1 by definition, since we assumeM 2A) to conclude
that P-a.s. M � 0 as well.

So now assume |M |, V (M) uniformly bounded bym and fix t>0; for n2N, set tk=
k t

n
.

By Remark 5.11, we have

E[Mt
2] =E

" X
k=0

n¡1

(Mtk+1¡Mtk)

!
2
#

=
X
k=0

n¡1
E[(Mtk+1¡Mtk)

2 ]+ 2
X
k=/ l

E[(Mtk+1¡Mtk)(Mt`+1¡Mt`)]

=
X
k=0

n¡1

E[(Mtk+1¡Mtk)
2 ]:

By the definition of total variation we find

E[Mt
2]6E

�
V (M)t � sup

k=0;:::;n¡1
jMtk+1¡Mtkj

�
6mE

�
sup

k=0;:::;n¡1
jMtk+1¡Mtkj

�
:

For n!1, the term inside the expectation goes to zero because M is continuous (thus
uniformly continuous on [0; t]). Since moreover supt>0 jMtj6m, by dominated convergence
we get E[Mt

2] = 0. Since t > 0 was arbitrary, the proof is complete. �

Remark 5.12. Lemma 5.10 shows that any nontrivial continuous martingale is almost
surely of infinite variation. For discontinuous martingales this is not true: recall for instance
the compensated Poisson process of Example 4.4.

Exercise. Show that the compensated Poisson process is almost surely of finite variation
(with the same definition of �finite variation� that we used for continuous functions).

Since Brownian motion is a continuous martingale and not constant, we deduce that
it is not in A. In fact, it follows from the previous proof that for any square-integrable
martingale M and any partition 0= t0<t1< :::< tn= t of [0; t], we have:

E[(Mt¡M0)2] =E

"X
k=0

n¡1

(Mtk;tk+1)
2

#
; (5.2)

so it seems more reasonable to expect that
P

k=0
n¡1 (Mtk;tk+1)

2 converges as n!1, rather
than hoping for convergence of

P
k=0
n¡1 jMtk;tk+1j. We start by showing this explicitly in the

Brownian case.

Lemma 5.13. (Quadratic variation of Brownian motion) Let t>0 and let 0= t0n<
t1
n<:::< tkn

n = t be a sequence of deterministic partitions of [0; t] with max06i<kn jti+1n ¡ tinj
converging to zero as n!1. Then

lim
n!1

X
i=0

kn¡1

(Bti+1n ¡Btin)
2= t

where the convergence takes place in L2(
;P).
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We call hBit := t, t> 0, the quadratic variation of B. It is the unique (up to indistin-
guishability) process in A+ such that Bt

2¡hBit, t> 0, is a martingale.

Proof. The variables (Bti+1n ¡ Btin)i=0;:::;kn¡1
2 are independent and E[(Bti+1n ¡ Btin)

2] =
(ti+1n ¡ tin); therefore " X

i=0

kn¡1

(Bti+1n ¡Btin)2¡ t

!
2
#
=var

 X
i=0

kn¡1

(Bti+1n ¡Btin)2
!

=
X
i=0

kn¡1

var((Bti+1n ¡Btin)2)

6
X
i=0

kn¡1
E[(Bti+1n ¡Btin)

4
]

¡
Bti+1n ¡tin� ti+1

n ¡ tin
p

N; E[N4] = 3 for N�N (0; 1)
�
=3
X
i=0

kn¡1

(ti+1n ¡ tin)2

. max
06k<kn

jtk+1n ¡ tknj
X
i=0

kn¡1
(ti+1n ¡ tin)

=t � max
06k<kn

jtk+1n ¡ tknj ! 0

as n!1 by assumption.
We already saw in Example 4.3 that Bt2¡ t is a martingale. If A2A+ is another process

for which Bt2¡At is a martingale, then by linearity t¡At2A is a continuous martingale
of finite variation; therefore t¡At is indistinguishable from 0 by Lemma 5.10. �

Exercise. Let f 2C�([0; t]) with �2 (1
2
; 1]. Show that for any sequence of partitions as

in Lemma 5.13, it holds

lim
n!1

X
i=0

kn¡1

(f(ti+1n )¡ f(tin))2=0:

--------------------- End of the lecture on November 28 ---------------------

Refining the arguments from Lemmas 5.10 and 5.13 (see also Exercise Sheet 6) it's easy
to show that

P(kBkTV([s;t])=+1 for all 06 s< t<1)=1

(technically we only defined TV([0; t]), but the definition immediately generalizes to any
interval [s; t]). As a consequence, we cannot hope to integrate general continuous stochastic
processes against B naively. Indeed, for any n and any partition �n= f0= t0< t1< ::: <
tkn
n = tg, we can find a continuous process H(n) such that jHt

(n)(!)j61 for all t and ! and
such that X

k=0

n¡1

Htk
n
(n)
Btkn;tk+1n =

X
k=0

n¡1

jBtkn;tk+1n j;

implying that this quantity can grow without control as n!1 and not converge at all.
H(n) can be constructed by enforcing Htk

n
(n)= sgn(Btkn;tk+1n ) and then extending to all other

values of t by piecewise linear interpolation (or splines, Legendre polynomials, or the
numerical scheme you prefer).
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However, to construct H(n) one already needs to know sgn(Btkn;tk+1n ) at time tk
n, so we

have to peak into the future. The brilliant idea of Itô in the 1940s was to restrict the space
of integrands to those that are adapted (more precisely, progressively measurable) with
respect to the past of B (or more generally with respect to our filtration F). Moreover,
unlike for the integral against processes of finite variation A, we will not freeze the realiza-
tion B(!) and construct a pathwise integral using real analysis, but rather we construct
the integral as a limit in L2, so using functional analysis instead. The point is that we want
to exploit to the fullest all the stochastic cancellations coming from the special structure
of the process B, similarly to what we did in the construction of the Wiener integral. Like
therein, we will in fact obtain an exact isometry between L2-spaces.

We will present the construction of stochastic integrals for the much richer class of
continuous (local) martingales, which requires to understand the key role played by their
quadratic variation. In view of this, let us first run some preliminary computations, starting
from candidate Stjeltes-type integrals: given a filtration �=f0= t0<t1<:::<tn= tg, and a
collection of bounded random variables fHtkgk=1n such thatHtk is Ftk-measurable, consider

(H�B)t=
X
k=0

n¡1

HtkBtk;tk+1= �
Z
0

tX
k=0

n

Htk1[tk;tk+1)(s) dBs�

and let's try to compute its L2-norm:

E[(H �B)t2]=
X
k=0

n¡1

E[jHtkj2 jBtk;tk+1j2] + 2
X
k=/ l

E[HtkBtk;tk+1HtlBtl;tl+1]:

By the martingale property, like in Remark 5.11, the terms with k=/ l vanish: suppose wlog
k < l, then

E[HtkBtk;tk+1HtlBtl;tl+1] =E[HtkBtk;tk+1HtlE[Btl;tl+1jFtl]] = 0:

Combined with the independence of increments and stationarity properties of B, we get

E[(H �B)t2] =
X
k=0

n¡1

E[jHtkj2 ](tk+1¡ tk)

=E

"X
k=0

n¡1

jHtkj2(tk+1¡ tk)

#

=E

"Z
0

tX
k=0

n

Htk
2 1[tk;tk+1)(s)ds

#
=E

24









X
k=0

n

Htk 1[tk;tk+1)












L2([0;t])

2
35

which already looks very promising, since all passages were exact equalities!
For general square integrable martingales M , if we similarly define (H �M)t, the same

procedure however will not reach a conclusion. We can still push it as far as possible given
our current theory:

E[(H �M)t2] =
X
k=0

n¡1

E[jHtkj2 (Mtk;tk+1)
2]

=
X
k=0

n¡1

E[jHtkj2E[(Mtk;tk+1)
2jFtk]]

=E

"X
k=0

n¡1

jHtkj2E[(Mtk;tk+1)
2jFtk]

#
:
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Notice again that, by the martingale property, it holds

E[(Mtk;tk+1)
2jFtk]=E[Mtk+1

2 jFtk]¡ 2E[Mtk+1MtkjFtk]+E[Mtk
2 jFtk]

=E[Mtk+1
2 jFtk]¡ 2MtkE[Mtk+1jFtk]+Mtk

2

=E[Mtk+1
2 jFtk]¡Mtk

2

=E[Mtk+1
2 ¡Mtk

2 jFtk]:

Inserting this identity in the above we arrive at

E[(H �M)t2] =E

"X
k=0

n¡1

jHtkj2E[Mtk+1
2 ¡Mtk

2 jFtk]

#
:

Even though M is not of finite variation, the process t 7!Mt
2 seems to have some monot-

onicity property, at least w.r.t. conditional expectation: we just saw that

E[Mtk+1
2 jFtk]=Mtk

2 +E[(Mtk;tk+1)
2jFtk]>Mtk

2 :

Based on this intuition, if we could replace E[Mtk+1
2 ¡Mtk

2 jFtk] with E[Atk;tk+1jFtk], where
Atk;tk+1 denote the increments of a stochastic process A2A+, we would get

E[(H �M)t2] =E

"X
k=0

n¡1

jHtkj2Atk;tk+1

#
=E

�Z
0

t

Htk
2 1[tk;tk+1)(s) dAs

�
which would somewhat restore the desired isometry property, at the price of replacing the
standard Lebesgue integration dt we got in the Brownian case with dAt. The goal of the
next section is to show the existence of A for a large class of continuous martingales.

5.3 Continuous martingales and quadratic variations
It turns out that Lp-bounded, continuous martingales have a nice Banach space structure,
at least for p2 (1;1). To this end, let us define

Hp;c :=

(
(Mt)t>0 :M is a continuous martingale, kM kHp;c := sup

t>0
E[jMtjp]

1

p<1

)
;

notice that, if M 2Hp;c, then it is L1-bounded, so that by the martingale convergence
theorem its P-a.s. limit M1 exists almost surely.

Proposition 5.14. For any p2 (1;1), (Hp;c; k�kHp;c) is a Banach space; moreover it is
isometric to a closed linear subspace of Lp(
), with linear isometry J given by JM :=M1:

kM kHp;c
p := sup

t>0
E[jMtjp]=E[jM1jp] = kM1kLp:

Moreover, Mt!M1 in Lp as t!1. An equivalent norm k � k~Hp;c for Hp;c is given by

kM k~Hp;c
p :=E[kM kCb(R+)

p ] :=E
�
sup
t>0

jMtjp
�
:

For p=2, H2;c has a Hilbert space structure, with inner product given by

(M;N)H2;c :=E[M1N1]: (5.3)

Proof. Exercise Sheet 7. �
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We will see later that, due to its Hilbert structure and the nice scalar product given
by (5.3), the space H2;c is a natural one where to develop a stochastic integration theory.
Convergence in H2;c is however very strong, and it implies weaker (but still extremely
useful) notions of convergence like the following.

Definition 5.15. (UCP convergence) Let ffngn, f be deterministic functions from R+

to R; we say that fn converge to f uniformly on compact sets if

lim
n!1

sup
t2[0;T ]

jftn¡ ftj=0 8T 2 (0;+1):

Let fXngn, X be jointly measurable real-valued stochastic processes; we say that Xn con-
vergence to X uniformly on compacts in probability if

lim
n!1

P
�

sup
t2[0;T ]

jXt
n¡Xtj>"

�
=0

for all ">0 and T 2 (0;+1). In this case, we write Xn!X in ucp, and we refere to above
as ucp convergence.

The space of continuous stochastic processes (possibly adapted to some reference fil-
tration), endowed to the ucp convergence, has a complete metric structure.

Lemma 5.16. The space of continuous stochastic processes (possibly adapted to a reference
filtration F) is a complete metric space when endowed with the distance

Ducp(X;Y ) :=E[D(X;Y )] :=
X
k=1

1

E
�
2¡k^ sup

t2[0;k]
jXt¡Ytj

�
which induces the ucp convergence.

Moreover if Xn!X in ucp, then there exists a subsequence fXnjgj such that, for P-
a.e. !, Xnj(!)!X(!) uniformly on compact sets.

Proof. We skipped the proof in the lectures, it is included here for completeness.
It's easy to check that by construction D (resp. Ducp) is a metric on the space C(R+)

(resp. the space of continuous processes); moreover D induces the uniform convergence on
compact sets.

Notice that D(�; �)6 1 by construction and that

E
�
1^ sup

t2[0;k]
jXt¡Ytj

�
6 2kDucp(X;Y ) 8k 2N:

By Markov's inequality, if Ducp(Xn; X)! 0, then supt2[0;k] jXt
n¡Xtj! 0 in probability;

as the argument holds for any k, it follows that Xn!X in ucp. Conversely, if Xn!X in
ucp, then each k-term in the series defining Ducp(Xn;X) converges to 0, and by dominated
convergence so does the whole series.

Suppose now that fXngn is a Cauchy series w.r.t. Ducp, then we can extract a subse-
quence such that Ducp(Xnj; Xnj+1)6 2¡j, so that

E

24X
j=1

1
D(Xnj; Xnj+1)

35=X
j=1

1
Ducp(Xnj; Xnj+1)6 1:

It follows that, for P-a.e. !, fXnj(!)gj2N is a Cauchy sequence in (C(R+);D) and there-
fore admits a unique limit in C(R+), which we denote by X(!):

lim
j!1

D(Xnj(!); X(!))= 0 for P-a.e. !:
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X is a stochastic process since it is the P-a.s. limit of processes, and has continuous
trajectories (up to relabelling it on a zero probability set) since (C(R+);D) is a complete
metric space. Again by the definition of Ducp and dominated convergence it's easy to see
that

lim
j!1

Dupc(Xnj; X)= lim
j!1

E[D(Xnj; X)]= 0

and then using the fact that fXngn is Cauchy one can deduce by triangular inequality that
limn!1D

upc(Xn; X)=0. �

Definition 5.17. (M2;c, quadratic variation) We denote by M2;c the space of con-
tinuous, square integrable martingales (Mt)t>0. Given M 2M2;c, IF there exists a process
A2A+ such that

Mt
2¡M0

2¡At
is a martingale, then we refer to A as the quadratic variation of M, and denote it by hM i.

Remark 5.18. If M 2M2;c and hM i exists, then it is an integrable process: setting
Nt =Mt

2 ¡M0
2¡ hM it, it holds hM it6Mt

2 +M0
2 + jNtj, where M2 is integrable since

M 2M2;c and N is integrable by definition of being a martingale. Moreover if M0=0, then

E[Nt] =E[N0]= 0 ) E[Mt
2] =E[hM it] 8t> 0:

Exercise. Show that, if hM i exists, so does hM ¡M0i and we have hM ¡M0i= hM i.

--------------------- End of the lecture on December 4 ----------------------

The next basic result guarantees that Definition 5.17 is meaningful.

Lemma 5.19. Let M 2M2;c. If hM i exists, then it is unique (up to indistinguishability).
Moreover, for any stopping time � it holds that

hM i� = hM � i:

Proof. Like in Lemma 5.13, if A and A~ are both processes in A+ satisfying the definition
of hM i, then

A¡A~= (M2¡M0
2¡A~)¡ (M2¡M0

2¡A)

is both a continuous martingale and a process in A, thus it is P-a.s. identically zero by
Lemma 5.10; namely A�A~ P-a.s.

If M 2M2;c is such that hM i exists, then

(M2¡M0
2¡hM i)� =(M�)2¡M0

2¡hM i�

is a martingale by the stopping theorem, which by uniqueness implies hM � i= hM i�. �
The main goal of this section is to ensure the existence of hM i and to provide a practical

way to construct it. To this end, we need to introduce some terminology.
We can identify a partition � of the real lineR+ with an increasing (possibly unbounded)

sequence of ordered points 0= t0< t1< ::: < tn< ::: and thus we can regard � as a (finite
or countable) subset of R+. We will say that � is locally finite if � \ [0; T ] is a finite
set for every T 2 (0;+1), equivalently if � has no accumulation points (apart from pos-
sibly +1). The mesh of a partition � is defined by j� j= supk>0 jtk+1¡ tk j. Given two
partitions �1 and �2, we say that �2 is a refinement of �1 if �1� �2.

Given a sequence of partitions f�ngn of R+, we say that: i) the sequence is increasing
if �n��n+1 for all n; ii) the sequence is of infinitesimal mesh if limn!1 j�nj=0.
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Theorem 5.20. Let M 2M2;c, then its quadratic variation hM i exists. Moreover, for
any deterministic sequence of locally finite partitions f�ngn of R+ with infinitesimal mesh,
upon defining (for �n= ftkngk>0)

At
n :=

X
k>0

(Mt^tkn;t^tk+1n )2

it holds that

An!hM i in upc asn!1: (5.4)

For any locally finite partition �=ftkgk>0 with j� j<1, setting A� :=
P

k>0(Mt^tk;t^tk+1)
2,

it holds

E
�

sup
t2[0;T ]

jAt�¡hM itj2
�
.E
��

sup
s;t2[0;T ]:jt¡sj6j� j

jMs;tj2
�
hM iT

�
(5.5)

for any T 2 (0;+1) (up to allowing both sides in ( 5.5) to take value +1).

In order to give the proof, we need some preliminary lemmas.

Lemma 5.21. Let M 2M2;c, �= ftkgk2N deterministic and locally finite. Then

Mt
2¡M0

2¡At�=2
X
k=0

1

Mt^tk(Mt^tk;t^tk+1) :=2Jt� (5.6)

for all t> 0, where the process J� is a continuous martingale.

Proof. In the case of a finite partition of the interval [0; T ], this is the content of Exercise
Sheet 8; the proof here proceeds identically. Notice in particular that, under the assumption
that � is locally finite, the series appearing in (5.6) is finite for any fixed t> 0. �

Lemma 5.22. Let M 2H4;c, 0= t0<t1< :::< tn= t. Then









M0M0;t¡
X
i=0

n¡1

Mti(Mti;ti+1)












L2

2

.E

"
sup
s2[0;t]

jM0;sj2
X
i=0

n¡1

(Mti;ti+1)
2

#
:

Proof. Notice tha all terms appearing have above have the right integrability under the
assumption M 2H4;c. It holds

(�) :=M0M0;t¡
X
i=0

n¡1

Mti(Mti;ti+1)=¡
X
i=0

n¡1

M0;ti(Mti;ti+1)

so that

k(�)kL22 =
X
i=0

n¡1
E[(M0;ti)2(Mti;ti+1)2] + 2

X
i<j

E[M0;ti(Mti;ti+1)M0;tj(Mtj;tj+1)]

By the martingale property, for any fixed i < j, it holds

E[M0;ti(Mti;ti+1)M0;tj(Mtj ;tj+1)] =E[M0;ti(Mti;ti+1)M0;tjE[Mtj;tj+1jFtj]] = 0: (5.7)

Combined with the trivial estimate jM0;tij26sups2[0;t] jM0;sj2, this yields the conclusion. �

With these preparations, we can now present the

Proof of Theorem 5.20. We divide the proof in several steps. To avoid being too
repetitive, whenever partitions � appear in the following, they are taken deterministic and
locally finite partitions of R+.
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Step 1. We first assume M to be a bounded martingale, namely that there exists a
deterministic C > 0 such that P-a.s. supt>0 jMtj6C; we will remove this assumption at
the very end of the proof. Let �1, �2 be partitions with �1��2 and consider A�i as defined
above. By Lemma 5.21, taking the difference of the two identities given by (5.6), we have

At
�1¡At

�2=¡2(Jt
�1¡Jt

�2)

where J�1¡ J�2 is a continous martingale. By Doob's inequality, we have

E
�

sup
t2[0;T ]

jJt
�1¡Jt

�2j2
�
.E[jJT

�1¡JT
�2j2] 8T 2 (0;+1):

Step 2. For fixed T , we now want to estimate the above quantity. Since �1��2, without
loss of generality we can assume T 2�1 (easy to see if you draw a picture). Notice that, since
�1��2, for any interval [tk; tk+1] coming from �1, we find a finite partition by considering

[tk; tk+1]\�2= ftk= s0k<s1k< :::< snk
k = tk+1g:

Therefore

JT
�1¡ JT

�2=
X
k

Jk :=
X
k

0@Mtk
nMtk

n;tk+1
n ¡

X
j=0

nk¡1

Msj
kMsj

k;sj+1
k

1A:
Arguing as in (5.7), it's easy to check that E[JkJ`]=0 whenever k=/ `. On the other hand,
for fixed k, by Lemma 5.22 (for M~s=Mtk

n+s, w.r.t. the shifted filtration Fs~ =Fs+t) we get

kJkkL22 6E

24 sup
s2[tkn;tk+1n ]

jMtk
n;sj2

X
j=0

nk¡1 ����Msj
k;sj+1

k

����235
6E

24 sup
u;s2[0;T ]:ju¡sj6j�1j

jMu;sj2
X
j=0

nk¡1 ����Msj
k;sj+1

k

����235
so that

kJT
�1¡ JT

�2kL22 =
X
k

kJkk2

6 E

24 sup
u;s2[0;T ]:ju¡sj6j�1j

jMu;sj2
X
k

X
j=0

nk¡1 ����Msj
k;sj+1

k

����235
= E

�
sup

u;s2[0;T ]:ju¡sj6j�1j
jMu;sj2AT

�2
�
: (5.8)

Step 3. Consider now the increasing sequence of dyadic partitions �n= f2¡nkgk2N,
which is of infinitesimal mesh. We want to show that fA�ngn is a Cauchy sequence in the
ucp topology; in fact we will check something slightly stronger, namely that

lim
n!1

sup
m>n

E
�

sup
t2[0;T ]

jAt
�n¡At

�mj2
�
=0 8T 2 (0;+1): (5.9)

By the previous manipulations, Doob's inequality and (5.8) we arrive at

E
�

sup
t2[0;T ]

jAt
�n¡At

�mj2
�
.E
�

sup
u;s2[0;T ]:ju¡sj62¡n

jMu;sj2AT
�n+m

�
6E
�

sup
u;s2[0;T ]:ju¡sj62¡n

jMu;sj4
�
1/2

E[(AT
�n+m)2]1/2:
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The first term is bounded and thus infinitesimal by dominated convergence, since M is
bounded by assumption and uniformly continuous on compact sets; so we only need to
provide a uniform-in-m estimate for the second term.

Since M is bounded and (again by Lemma 5.21) AT
�n+m =MT

2 ¡M0
2 ¡ 2JT

�n+m, by
triangular inequality this is the same as bounding JT

n+m in L2. By the �orthogonality of
increments� property (5.7), we have

E[jJT
�n+mj2] =E

"X
k>0

����Mtk
n+m^T

����2����Mtk
n+m^T ;tk+1

n+m^T
����2#

6C2E

"X
k>0

����Mtk
n+m^T ;tk+1

n+m^T
����2#

=C2E[jMT ¡M0j2].C4

where in the intermediate passage we used (5.2). Overall we conclude that

sup
m>n

E
�

sup
t2[0;T ]

jAt
�n¡At

�mj2
�
.C4E

�
sup

u;s2[0;T ]:ju¡sj62¡n
jMu;sj4

�
1/2

which yields (5.9). Therefore (A�n)n is Cauchy and admits a unique limit in ucp, as well
as in L2(
;C([0;T ])) for any fixed T 2 (0;+1); denote it by A. For fixed n, by construction

A0
�m=0; A(k+1)2¡n

�n+m >Ak2¡n
�n+m 8m> 0

therefore passing to the limit the same properties hold true for A; since dyadic points
densify on R+ and A is continuous, we deduce that A is increasing and so A2A+.

Step 4. Since At
�n!At in L2 andM2¡M0

2¡A�n is a martingale for each n, by passing
to the limit we deduce thatM2¡M0

2¡A is a martingale as well. Since A2A+, this proves
that A is the (unique) quadratic variation of M , A= hM i.

Step 5. Proof of (5.5): given a partition �, we can always find an increasing sequence
f�ngn with infinitesimal mesh with �1= �; the previous estimates (cf. (5.8)) yield

E
�

sup
t2[0;T ]

jAt�¡At
�nj2

�
.E
��

sup
s;t2[0;T ]:jt¡sj6j� j

jMs;tj2
�
jAT
�nj
�

and we can now pass to the limit as n!1, since A�n!hM i, to deduce that (5.5) holds.
As a consequence of (5.5), given any sequence of partitions �n of infinitesimal mesh, not
necessarily increasing, we have

limsup
n!1

E
�

sup
t2[0;T ]

jAt
�n¡hM itj2

�
. limsup

n!1
E
��

sup
s;t2[0;T ]:jt¡sj6j�nj

jMs;tj2
�
hM iT

�
=0:

Step 6. Finally, we remove the assumption that M is bounded by a localization argu-
ment. Let M 2M2;c and define the stopping times �n= inf ft> 0: jMtj> ng. Clearly �n
is an increasing sequence, and moreover for P-a.e. ! we have �n(!) "+1 since M(!) is
continuous (thus bounded on compact sets). By the stopping theorem, M �n is a bounded
continuous martingale, so the previous steps apply and hM �ni2A+ is well-defined. More-
over, form>n, by Remark 5.18 it holds hM �mi�n= hM �ni and so we can consistently define

hM it(!)=
�
hM �nit(!) if there exists n such that t6 �n(!)
0 otherwise:

:
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It's easy to check that hM �ni! hM i in ucp since

P
�

sup
t2[0;T ]

jhM it¡hM�nitj>"
�
6P(�n<T )! 0 as n!1:

By properties of ucp convergence, hM i2A+ since hM i�n do so. Takingm!1 in the above
relation, we also get hM i�n= hM �ni; since hM i is increasing, by monotone convergence and
Remark 5.18 we get

E[hM it] = lim
n!1

E[hM it^�n]= lim
n!1

E[hM it
�n]= lim

n!1
E[M�n^t

2 ]=E[Mt
2]

where in the last step we used the fact that (M�n^t
2 )n is uniformly integrable since by Doob's

inequality

M�n^t
2 6 sup

s2[0;t]
Ms

2 8n; E
�

sup
s2[0;t]

Ms
2
�
.E[Mt

2]<1:

The same arguments show that, for any fixed t, hM it
�n!hM it and (Mt

�n)2!Mt
2 in L1,

so that from

E[(Mt
�n)2¡M0

2¡hM it
�njFs]= (Ms

�n)2¡M0
2¡hM is

�n

we can pass to the limit to conclude that M2¡M0
2¡hM i is a martingale. �

Extra comment: The proof actually yields the relation

Mt
2¡M0

2¡hM it= lim
n!1

2
X
k

Mtk
n(Mtk+1

n ^t¡Mtk
n)= 2

Z
0

t

MsdMs (5.10)

where the last term is a stochastic integral , as we will see later; equation (5.10) will be a
prototypical example of the Itô formula.
Equation (5.10) can also be interpreted as a failure of the classical chain rule: if M were
classically differentiable, by the fundamental theorem of calculus we should have found

Mt
2¡M0

2=2
Z
0

t

MsMs
0ds=2

Z
0

t

MsdMs

without any term hM i appearing. The fact that M is not C1 is not surprising (if it were,
it would be of finite variation, thusM�0 by Lemma 5.10), but (5.10) actually tells us that
standard rules of calculus do not apply for martingales. This is the reason why we will need
to develop a theory of stochastic calculus instead, which is nontrivial and truly requires
to exploit the cancellations coming from a probabilistic framework (i.e. the martingale
property).
In the proof, in order to show that (An)n is Cauchy, it was actually easier to work with
(Jn)n, the corresponding approximations of the stochastic integral. With the combined
information coming from (M; hM i) at hand, we will be able to set up a far reaching theory
of stochastic integration.
This fact bears a strong similarity with much more recent and pathwise theories of inte-
gration coming from rough path theory, see the monographs [10, 9]: loosely speaking, given
some signalX, in order to rigorously define objects of the form

R
0

�
F (Xs)dXs, one first needs

to enhance the signal by postulating (or, in our case, proving) the existence of the iterated
integral Xt :=

R
0

�
XsdXs; once the pair (X;X) is fixed, then the integrals

R
0

�
F (Xs) dXs are

also uniquely determined for any smooth bounded function F .

--------------------- End of the lecture on December 5 ----------------------
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Definition 5.23. (Quadratic covariation) Let M;N 2M2;c. We define the quadratic
covariation of M and N as the process

hM;N i := 1
4
hM +N i¡ 1

4
hM ¡N i:

Notice the analogy of (5.23) with a polarization formula (recall the discussion in the
proof of Lemma 1.12).

Proposition 5.24. Let M, N 2M2;c. Then:

a) hM;N i is the unique (up to indistinguishability) process in A such that

MN ¡M0N0¡hM;N i
is a martingale.

b) For any sequence of deterministic locally finite partitions �n=ftkngk2N of R+ with
infinitesimal mesh limn!1 j�nj=0, it holds thatX

k=0

1

Mtk
n^t;tk+1n ^tNtk

n^t;tk+1n ^t!hM;N it in ucp:

c) The map (M;N) 7!hM;N i is bilinear and symmetric, and for any bounded stopping
time � it holds that

hM;N i� = hM � ; N � i= hM � ;N i:

Proof. Exercise Sheet 8. �

Part a) of the above Proposition (and possibly a passage to the limit procedure t!1)
immediately imply the following.

Corollary 5.25. If M;N 2M2;c and either M0=0 or N0=0, then for any t2 [0;1) it
holds E[hM;N it] =E[MtNt]. If additionally M;N 2H2;c, then

E[hM;N i1]=E[M1N1] = (M;N)H2;c:

Remark 5.26. If B1 and B2 are independent Brownian motions, we have seen in
Example 4.3 that B1B2 is a martingale, so that

hB1; B2i� 0:

In fact more generally, if M;N 2M2;c are independent, then necessarily hM;N i� 0.

Exercise. Let f :R+!R+ be a deterministic continuous increasing function and let
Mt=Bf(t) for a Brownian motion B. Show that M is a continuous martingale in its own
filtration and hM it= f(t).

5.4 Continuous local martingales
We have already seen in the proofs of Lemma 5.10 and Theorem 5.20 that whenever
dealing with martingales, it is very convenient to employ some localization procedures by
introducing convenient families of stopping times. It might therefore not be surprising that
several of the results presented so far can be extended to a larger class of objects than just
continuous, square integrable martingales.
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Definition 5.27. (Mc, localizing sequence, local martingale)

i. We write Mc for the set of all continuous martingales.

ii. A localizing sequence is an increasing sequence of stopping times (�n)n with
limn!1 �n=1 almost surely.

iii. An adapted processM is called a local martingale if there exists a localizing sequence
(�n)n such that, for each n2N, the stopped process

(M ¡M0)�n=M �n¡M0=(M�n¡M0)1�n>0

is a martingale. If in additionM is continuous, we say that M is a continuous local
martingale, we write M 2Mloc

c and we call (�n)n a localizing sequence for M.

Exercise. Show that every martingale is a local martingale.

Remark 5.28.

i. We do not require local martingales to be integrable. Indeed, not even M0 needs to
be integrable, and even in the caseM0=0, it might happen thatMt is not integrable.

ii. Every martingale is a local martingale. (Exercise above)

iii. Stability under stopping : if M 2Mloc
c (respectively M 2Mc) and � is a stopping

time, thenM � 2Mloc
c (respectivelyM � 2Mc). Indeed note that (M �)�n=(M �n)�=

M �n^� and then apply the stopping theorem.

iv. Linear combinations of local martingales are martingales: if M; N 2Mloc
c , then

�M +N 2Mloc
c for all �2R. (Exercise!)

v. For every M 2Mloc
c there exists a localizing sequence of stopping times (�n)n such

that (M ¡M0)�n is a uniformly integrable martingale for all n2N: just replace �n by
�n^n. The same argument shows that we can assume �n to be a bounded stopping
time for each fixed n.

Exercise. Show thatM is a local martingale if and only if there exists (another) localizing
sequence (�~n)n such that M �~n1�~n>0 is a martingale.

Lemma 5.29. Let M 2Mloc
c .

i. If M is non-negative (i.e. P-a.s. Mt> 0 for every t> 0) and M02L1, then M is a
supermartingale.

ii. If supt>0 jMtj 2L1, then M is a uniformly integrable martingale.

iii. If M 2Mloc
c , then �~n := �n^n, where �n := inf ft>0: jMt¡M0j>ng, is a localizing

sequence for M.

iv. If X0 is F0-measurable, then M~ t=MtX0 satisfies M~ 2Mloc
c .

v. If M 2Mloc
c and X0 is F0-measurable, then M ¡X02Mloc

c .

Proof. Exercise Sheet 9. �

Remark 5.30. Given point ii. of Lemma 5.29, we might feel tempted to guess that every
uniformly integrable local martingale is a martingale. But this is not true, and we will see
a counterexample later. In fact, one can even construct example of M 2Mloc

c such that
supt>0E[jMtj2]<1 but M 2/Mc.
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Exercise. (hard) Show that, if fMngn is a sequence in Mloc
c such that Mn!M in

ucp, then M 2Mloc
c . In other words, Mloc

c is closed under convergence in ucp. (Hint:
Lemma 5.16 might come in handy)

Several of the results we have presented so far for martingales readily extend to local
martingales by localization arguments.

Lemma 5.31. Let M 2A\Mloc
c , then P-almost surely Mt= 0 for all t> 0 (which we

write compactly as P-a.s. M � 0).

Proof. It follows from the corresponding result for martingales (Lemma 5.10) by local-
ization. Indeed, let (�n)n be a localizing sequence for M , then M�n2A\Mc (recall that
V (M �n)=V (M)�n) and thus M �n� 0 for all n2N. Letting �n!1 we get M � 0. �

Proposition 5.32. Let M 2Mloc
c . Then there exists an increasing process hM i2A+ with

hM i0=0, unique up to indistinguishability, such that

M2¡M0
2¡hM i 2Mloc

c (5.11)

which we call the quadratic variation of M. Moreover for any sequence of deterministic
locally finite partitions �m= ftkmgk2N of R+ with infinitesimal mesh, it holds thatX

k=0

1

(Mtk
m^t;tk+1m ^t)2!hM it in ucp: (5.12)

Proof. The proof is mostly a variation on the one of Theorem 5.20, up to localization
arguments (already contained therein).

It suffices to consider the case M0= 0, as the general one follows from the relation
hM ¡M0i= hM i, cf. Exercise Sheet 9. Let (�n)n be a localizing sequence forM , which we
may assume wlog to be such that M �n2M2;c by Lemma 5.29-iii. Then for each �n, hM �ni
exists and by monotonicity of �n it provides an increasing-in-n family of processes, so that

hM it= lim
n!1

hM �nit

exists and satisfies hM i�n= hM �ni; from this property and the fact that

(M�n)2¡hM �ni=(M2¡hM i)�n

is a martingale, we conclude that hM i is the desired quadratic variation. By Theorem 5.20
we also getX

k=0

1 ¡
Mtk

m^t;tk+1m ^t
�n

�
2=
X
k=0

1

(Mtk
m^t^�n;tk+1m ^t^�n)

2!hM �nit= hM it^�n in ucp

from which we can deduce (5.12) thanks to the property that P-a.s. �n"+1 (for any
fixed interval [0; T ], we can find n large enough such that P(�n<T )<", and apply the ucp
convergence for hM �ni on the event f�n>T g). �

As in the case of square integrable M , N 2Mc, we define the quadratic covariation of
M;N 2Mloc

c by formula

hM;N i := 1
4
(hM +N i¡ hM ¡N i)2A:

In analogy with Proposition 5.24, we have the following result.
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Proposition 5.33. Let M;N 2Mloc
c .

i. hM; N i is the unique (up to indistinguishability) process in A such that MN ¡
M0N0¡hM;N i is a local martingale.

ii. The map (M;N) 7! hM;N i is bilinear and symmetric.

iii. For any sequence of deterministic locally finite partitions �m=ftkmgk2N of R+ with
infinitesimal mesh,

P
k=0
1 (Mtk

m^t;tk+1m ^t)(Ntk
m^t;tk+1m ^t)!hM;N it in ucp.

iv. If � is a stopping time, we have hM;N i� = hM � ; N� i= hM � ;N i.

v. hM;N i= hM ¡M0;N ¡N0i.

Proof. The proof is almost identical to that of Proposition 5.24, up to localization argu-
ments. Only notice the key differences: in i. we can only deduce that we still have a local
martingale, while in iv. we can allow any stopping time � , not necessarily bounded (because
we don't have the problem of possible failure of integrability, coming from the requirement
of martingality). Part v. is new and based on the basic property that hM ¡M0i= hM i
(which holds true for martingales, cf. the exercise after Remark 5.18, thus also true for
local martingales by localization); cf. also Exercise Sheet 9. �

Lemma 5.34. (Kunita-Watanabe inequality, first version) Let M;N 2Mloc
c . Then

P-almost surely

jhM;N is;tj6V (hM;N i)s;t6 hM is;t
1/2hN is;t

1/2 8s6 t <1:
Similarly, P-a.s.

limsup
t!1

jhM;N itj6V (hM;N i)16 hM i1
1/2hN i1

1/2

where the second and third terms are always defined by monotonicity (possibly as +1).

--------------------- End of the lecture on December 11 ---------------------

Proof. Fix any s < t, then we can construct a series of increasing partitions �n with
infinitesimal mesh such that �1 = fs; tg. In this case it follows that, for each fixed n,
�n\ [s; t] is a partition of [s; t] and so by Proposition (5.32) P-a.s. it holds

jhM;N is;tj= lim
n!1

��������X
k

Mtk
n;tk

n+1Ntk
n;tk

n+1

��������
6 lim
n!1

�X
k

¡
Mtk

n;tk
n+1

�
2
�
1/2
�X

k

¡
Ntk

n;tk
n+1

�
2
�
1/2

=hM is;t
1/2 hN is;t

1/2
:

Having shown the result for fixed s < t, we can find a set of full probability where the
inequality holds for all rational s < t and finally extend to all s < t by continuity of the
paths of hM;N i, hM i and hN i.

Having established the first inequality, again by Cauchy�Schwarz, for s= t0<:::<tn= t
it holds: X

k=0

n¡1

jhM;N itk;tk+1j6
X
k=0

n¡1

hM itk;tk+1
1/2 hN itk;tk+1

1/2 6 hM is;t
1/2hN is;t

1/2
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which by definition of total variation yields

V (hM;N i)s;t6 hM is;t
1/2hN is;t

1/2
:

The final inequality follows by taking s=0 and sending t!1. �

We will shortly see a very powerful result relating moment bounds for M 2Mloc
c to

moment bounds for hM i, see Theorem 5.38 below. To this end, we first need some prepa-
rations.

Definition 5.35. (Lenglart's domination relation) Let (Xt)t>0, (Gt)t>0 be progres-
sive, non-negative processes. We say that X is dominated by G if

E[X�]6E[G�] for all bounded stopping times � (5.13)

with the convention that +16+1.

In the following, given a continuous stochastic processX, it will be convenient to denote
by X� its running supremum (in modulus), namely Xt

�= sups2[0;t] jXsj.

Lemma 5.36. (Lenglart's inequalities) Let X be a non-negative, continuous adapted
process, and let G be a non-negative, increasing, continuous adapted process; assume that
X is dominated by G, in the sense of Definition 5.35. Then:

i. For any a; b> 0, it holds

P
�
sup
t>0

Xt> a
�
6 1
a
E
�
sup
t>0

Gt^ b
�
+P

�
sup
t>0

Gt>b
�
: (5.14)

ii. For any �2 (0; 1); it holds

E[(X1� )�]6
�¡�

1¡ � E[G1
� ]: (5.15)

Proof. Exercise Sheet 8. �

Remark 5.37. Often inequality (5.14) is stated in its weaker but more practical version

P
�
sup
t>0

Xt> a
�
6 b
a
+P

�
sup
t>0

Gt>b
�
: (5.16)

We are now ready to state and partially prove the following result. It is one of the most
useful martingale inequalities, with countless applications.

Theorem 5.38. (Burkholder�Davis�Gundy inequality, BDG for short)
For any p2 (0;1), there exist universal constants cp;Cp>0 such that for anyM 2Mloc

c

with M0=0, setting Mt
�= sups6t jMsj, it holds

cpE
�
hM i1

p/2�6E[(M1
� )p]6CpE

�
hM i1

p/2� (5.17)

with the convention that +16+1.

Comment: It is customary to say that the constants cp and Cp are �universal� because
they can be taken the same for all local martingales on any probability space whatsoever.
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Proof. We will only prove the inequality for p2 (0; 4], see the comments after the proof
for the case p> 4.

We claim that, once we show the estimate for p= 4, all the other cases will follow.
Indeed, by applying the inequality for p=4 forM replaced byM �, with � a finite stopping
time, we obtain

E[c4hM i�2]6E[(M�
�)4]6E[C4hM i�2];

in other words, c4hM i�2 is dominated (in the sense of Definition 5.35) by (M�
�)4, which in

turn is dominated by C4hM i�2. Therefore by Lenglart's inequality (5.15) we find

c4
�

�
�¡�

1¡ �

�¡1
E[hM i12�]6E[(M1

� )4�]6 �¡�

1¡ � C4
�E[hM i12�] 8�2 (0; 1)

which yields the conclusion upon taking p=4� for p2 (0; 4).
It remains to consider the case p=4. Up to localization, we may assume M and hM i

to be bounded processes; arguing as in Lemmas 5.21 and 5.22, for any fixed partition � of
R+ and any t> 0, we have the relation

Mt
2¡At�=2

X
k=0

1

Mt^tk(Mt^tk;t^tk+1) :=2Jt�

with J� being a martingale, and by Doob's inequality and usual computations based on
martingale increments we have

E
�

sup
s2[0;t]

jMs
2¡As� j

�
.E[jJt� j2] =E

"X
k=0

1

jMt^tkj2(Mt^tk;t^tk+1)
2

#

6E
"
jMt

�j2
X
k=0

1

(Mt^tk;t^tk+1)
2

#
so that after passing to the limit as we take a sequence of partitions we find

E
�

sup
s2[0;t]

jMs
2¡hM isj2

�
.E[jMt

�j2 hM it]

and now sending t!1 we get

E
�
sup
t>0

jMt
2¡hM itj2

�
6CE[jM1

� j2 hM i1]

for some C > 0. We show how to get one of the estimates, the other case being identical
upon inverting the roles of jM�j2 and hM i. By the basic inequality (a+ b)26 2(a2+ b2)

E[jM1
� j4] =E

�
sup
t>0

jMt
2�hM itj2

�
62E

�
sup
t>0

jMt
2¡hM itj2

�
+2E[hM i12 ]

62CE[jM1
� j2 hM i1] + 2E[hM i12 ]

6E
�
1
2
jM1

� j4+2C2hM i12
�
+2E[hM i12 ]

=1
2
E[jM1

� j4] + (2C2+2)E[hM i12 ]
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where in the intermediate passage we used the basic inequality ab6 a2

2
+ b2

2
, for a= jM1

� j2

and b=2C hM i1. After rearraging the last inequality so that E[jM1
� j4] only appears on

the l.h.s., we get the conclusion. �

Comments and bibliography:

� In terms of applications, the second inequality in (5.17) is the truly relevant one.
The first inequality in (5.17) informs us that by estimatingE[(M1

� )p] by E
�
hM i1

p/2�
we are not �losing too much information� as the two quantities are comparable.

� For discontinuous martingales, the BDG inequalities are still true, but only for the
range of exponents p 2 [1;1); note however that for discontinuous processes we
cannot apply Lenglart's inequalities, so the above proof does not work.

� We might see later (possibly in Exercise sheets), once we have access to stochastic
calculus tools, how to prove BDG inequality for p > 4. For proofs not relying on
stochastic calculus, see Chapter IV.42 from [24]; the proof therein, solely requires the
existence of hM i and is based on so called �good � inequalities�. It is fairly robust
as it not only holds for x 7! jxjp, but more generally for moderate functions F (x).

� There exist more recent and stronger pathwise versions of BDG inequalities, valid
for both discrete and càdlàg martingales; see the works [1, 25].

From Theorem 5.38 and localization arguments, we immediately deduce the following.

Corollary 5.39. (Local BDG inequality) For any p 2 (0;1) there exist universal
constants cp; Cp> 0 such that for any M 2Mloc

c with M0= 0 and any stopping time �,
setting Mt

�= sups6t jMsj, it holds

cpE
�
hM i�

p/2�6E[(M�
�)p]6CpE

�
hM i�

p/2�
with the convention that +16+1.

Corollary 5.40. Let M 2Mloc
c with M0=0 and let p2 (1;1).

i. The following are equivalent:

a) M 2Hp;c;

b) E[hM i1
p/2]<1;

c) E[supt>0 jMtjp]<1.

If additionally p> 2, then under either of the above conditions, M2 ¡ hM i is a
uniformly integrable martingale and in particular E[M1

2 ]=E[hM i1].

ii. The following are equivalent:

a) M is a p-integrable martingale;

b) E[hM it
p/2]<1 for all t> 0;

c) E[sups2[0;t] jMsjp]<1 for all t> 0.

If additionally p> 2, then under either of the above conditions, M2 ¡ hM i is a
martingale and in particular E[Mt

2]=E[hM it] for all t> 0.

N.b.: compare the above result with Remark 5.30; note that the statement is not true
anymore if we try to replace point c) by supt>0E[jMtjp]<1 (resp sups2[0;t]E[jMsjp]<1).
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Proof. Equivalence between a) and b) in Part i. comes from Exercise Sheet 9; equivalence
between a) and c) was already stated in Proposition 5.14. Uniform integrability is again
part of Exercise Sheet 9, while E[M1

2 ]=E[hM i1] comes from Corollary 5.25. Concerning
part ii., it suffices to apply i. to the uniformly integrable martingales (Mt^n)t>0, for
n2N. �

Lenglart's inequality allows to derive useful criteria for convergence in the ucp topology.

Corollary 5.41. Let fMngn, M 2Mloc
c with M0

n=M0 for all n. Then hMn¡M i! 0
in ucp if and only if Mn!M in ucp.

Proof. Exercise Sheet 9. �

--------------------- End of the lecture on December 12 ---------------------

5.5 Continuous semimartingales

Definition 5.42. An adapted process X = (Xt)t�0 is a continuous semimartingale if it
has a decomposition

X =X0+M +A (5.18)

into a continuous local martingale M 2Mloc
c and a continuous process A 2 A of finite

variation, both with M0=A0=0.

Exercise. Show that continuous semimartingales form a vector space, i.e. if X and Y are
continuous semimartingales then so is X +�Y for every �2R.

Lemma 5.43. The decomposition ( 5.18) of a continuous semimartingale X into M and
A is unique (up to indistinguishability).

Proof. If X ¡X0=M +A=N +B are two decompositions, then M ¡N =B ¡A is in
Mloc

c \A and hence indistinguishable from the 0 process by Lemma 5.31. �

Definition 5.44. If X=X0+M+A and Y =Y0+N +B are continuous semimartingales,
we define the quadratic covariation of X and Y as hX; Y i := hM;N i. In particular, the
quadratic variation of X is hX i := hM i.

Note that hX i is uniquely defined thanks to Lemma 5.43, it is consistent with our
definition for the quadratic covariation for local martingales, and

hX;Y i= hX ¡X0; Y ¡Y0i; hX;Y i� = hX� ; Y � i= hX� ; Y i

in agreement with Proposition 5.33.

Exercise. According to the above definition, deduce from the Kunita�Watanabe inequality
(Lemma 5.34) that

jhX;Y is;tj6V (hX;Y i)s;t6 hX is;t
1/2hY is;t

1/2 8s6 t <1

holds in this case we well.
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Lemma 5.45. For any continuous semimartingales X, Y and any sequence of deterministic
locally finite partitions �m= ftkmgk2N of R+ with infinitesimal mesh, it holds thatX

k=0

1

Xtk
m^t;tk+1m ^tYtkm^t;tk+1m ^t!hX;Y it in ucp: (5.19)

Proof. By polarization we can reduce to X = Y ; we can also assume X0= 0, so that
X =M +A. We already know thatX

k=0

1

(Mtk
m^t;tk+1m ^t)2!hM it in ucp

so by developing the square it only remaines to show thatX
k=0

1

Mtk
m^t;tk+1m ^tAtkm^t;tk+1m ^t+

X
k=0

1

(Atkm^t;tk+1m ^t)2! 0 in ucp: (5.20)

Notice that by Cauchy

X
k=0

1

Mtk
m^t;tk+1m ^tAtkm^t;tk+1m ^t6

 X
k=0

1

(Mtk
m^t;tk+1m ^t)2

!
1/2
 X
k=0

1

(Atkm^t;tk+1m ^t)2
!
1/2

where we already have convergence in upc to hM i for the first term; so (5.20) follows one
we show that the second term is infinitesimal. This is actually a result which you already
solved in Exercise Sheet 7, but let us give the proof for completeness.

Fix T 2 (0;+1). Since A is continuous, it is uniformly continuous on [0; T ]; on the
other hand it is of finite variation, therefore for any t2 [0; T ] we haveX

k=0

1

(Atkm^t;tk+1m ^t)26sup
k
jAtkm^t;tk+1m ^tj

X
k=0

1

jAtkm^t;tk+1m ^tj

6
0@ sup

06u6s6T
ju¡sj6j�mj

jAu;sj
1AkAkTV([0;T ])

where the estimate holds !-wise, is uniform in t 2 [0; T ], and the first term vanishes as
m!1 by the assumption and uniform continuity. �

Exercise. Let M 2Mloc
c . Show that M2 is a continuous semimartingale.

Exercise. (very hard given our current tools at disposal) Let X be a continuous
semimartingale. Show that X2 is a semimartingale.

6 Stochastic integration

We now have in place all the ingredients to finally construct the stochastic Itô integralR
0

�
HsdXs, for suitable stochastic integrands H and with respect to (henceforth abbrevi-

ated w.r.t.) continuous semimartingales X as integrators. Although the resulting theory is
already quite rich under these assumptions, requiring continuity of X is mostly for technical
convenience; see for example Protter [22] for a theory of stochastic integration w.r.t. càdlàg
semimartingales.
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To develop the theory, we will proceed by steps: we first define
R
0

�
HsdMs for elementary

processes H and martingales M 2M2;c, then extend the definition to general H by Itô
isometry, and then further extend it to M 2Mloc

c by localization. We finally extend the
definition to continuous semimartingales X =M +A by linearity. Along the way, special
attention will be given to the case where M =B Brownian motion.

Recall that in the following we are always on a filtered probability space (
;F ;F;P)
satisfying the usual conditions.

6.1 Stochastic integrals of simple processes
We start by defining stochastic integrals in the simplest possible case, where we can �guess�
a meaningful definition just by enforcing linearity of the integration and the property thatR
s

tdMu=Ms;t whenever s< t.

Definition 6.1. (Bounded elementary processes) We denote by bE the set of bounded
elementary processes, namely processes H of the form

Ht(!)=
X
k=0

n¡1

hk(!)1(tk;tk+1](t) (6.1)

for some given n2N, 06 t0< t1< ::: < tn, and random variables fhkgk=0n¡1 such that hk2
L1(Ftk) for all k�n.

Remark 6.2. Note that H is left-continuous and adapted, and therefore progressively
measurable. Moreover, it is easy to check that bE is a linear vector space.

Recall previously introduced notations:M2;c denote square integrable continuous mar-
tingales, whileH2;c denote L2-bounded continuous martingales (the latter is a Hilbert space
by Proposition 5.14.

Proposition 6.3. (Itô isometry for bounded elementary processes) Let M 2M2;c

and H 2 bE; we define the stochastic integral of H with respect to M as the processZ
0

t

HsdMs :=
X
k=0

n¡1

hkMtk^t;tk+1^t 8t> 0:

The process
R
0

�
HsdMs2H2;c and has quadratic variation given by�Z
0

�
HsdMs

�
t

=
X
k=0

n¡1

hk
2hM itk^t;tk+1^t=

Z
0

t

Hs
2 dhM is: (6.2)

In particular, we have the Itô isometry







Z
0

�
HsdMs










H2;c

2

=E

��Z
0

1
HsdMs

�
2
�
=E

�Z
0

1
Hs
2dhM is

�
=E

"X
k=0

n¡1

hk
2hM itk;tk+1

#
: (6.3)

Remark 6.4. Note that the definition of
R
0

�
HsdMs in (6.3) does not depend on the specific

choice of the representation (6.1) (namely if we change the choice of ftkgk=0n by further
refining the partition, we get the same process (6.3)). Moreover, it is easy to check that
the stochastic integral is linear in H , in the sense that (as stochastic processes)Z

0

�
(�Hs+Ks) dMs=�

Z
0

�
HsdMs+

Z
0

�
KsdMs
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for all �2R and H, K 2 bE.

Proof. It is clear from the definition that Nt :=
R
0

t
Hs dMs is continuous. Noticing that

hk 2L1, the sum in (6.3) is finite and by construction Nt=Ntk for t> tn, it follows that
N is integrable and L2-bounded (since M 2M2;c). Adaptedness is also immediate.

Once we show that N is a martingale and (6.2) holds, the isometry (6.3) follows by
taking expectation since N0=0 (cf. Corollary 5.25).

To verify the martingale property, by linearity it suffices to show that the process
Nt
k :=hkMtk^t;tk+1^t is a martingale, for each fixed k2f0; :::; n¡1g. To this end, fix s6 t.

If t6 tk, then Nt
k=Nsk=0 and there is nothing to prove. If s> tk, then

E[Nt
k jFs] =E[hkMtk^t;tk+1^tjFs] =hkE[Mtk+1^t¡Mtk^tjFs]

=hk(Mtk+1^t^s¡Mtk^t^s)=Ns
k

where in the intermediate passage we used the stopping theorem. If s6 tk<t, then by the
tower property and the previous step

E[Nt
k jFs]=E[E[Nt

kjFtk]jFs]=E[Ntk
k jFs]= 0=Nsk:

Overall this shows that Nk is a martingale and by linearity so is N .
It remains to show (6.2), namely that

N~t :=

 X
k=0

n¡1

hkMtk^t;tk+1^t

!
2

¡
X
k=0

n¡1

hk
2hM itk^t;tk+1^t

=
X
k=0

n¡1

hk
2[(Mtk^t;tk+1^t)

2¡ hM itk^t;tk+1^t]+ 2
X
j<k

hkhjMtk^t;tk+1^tMtj^t;tj+1^t

is again a martingale. We will show that, for each k, the process

N~tk :=hk
2[(Mtk^t;tk+1^t)

2¡ hM itk^t;tk+1^t]

is a martingale; a similar argument works for the cross-terms related to j < k, which by
linearity implies that N~ is a martingale.

As before, if s6 t6 tk, N~tk=N~sk=0; once we have shown the martingale property for
tk6 s6 t, the intermediate case s6 tk6 t follows by conditioning w.r.t. Ftk first. So we
may assume tk6 s6 t. Notice that in this case

(Mtk^t;tk+1^t)
2¡ hM itk^t;tk+1^t=(Mtk+1^t¡Mtk+1^tk)

2¡hM itk+1^t+ hM itk+1^tk
=(Mtk;t

tk+1)2¡hM tk+1itk;t

where we used the fact that hM itk+1^u= hM tk+1iu by Lemma 5.19. M~ t :=Mt
tk+1 is again

a continuous martingale by the stopping theorem, therefore for tk6 s6 t we have

E[N~tk jFs] =hk2E[(M~ tk;t)2¡hM~ itk;tjFs]
=hk

2E[M~ t2¡hM~ it¡ 2M~ tM~ tk+M~ tk
2 + hM~ itkjFs]

=hk2 [M~s2¡hM~ is¡ 2M~ tkE[M~ tjFs]+M~ tk
2 + hM~ itk]

=hk2 [M~s2¡ 2M~ tkM~s+M~ tk
2 ¡hM~ is+ hM~ itk] =N~sk

which concludes the proof. �

Exercise. Complete the proof of Proposition 6.3, i.e. show similarly that the processes

t 7!hkhjMtk^t;tk+1^tMtj^t;tj+1^t
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with j < k are martingales.

--------------------- End of the lecture on December 18 ---------------------

6.2 Stochastic integration w.r.t. Brownian motion
We now specialize the previous result to the case whereM=B Brownian motion. Recall the
concept of progressively measurable processes coming from Definition 3.11, and its link to
measurability w.r.t. to the �-algebra Prog of progressive events coming from Remark 3.12.

Definition 6.5. Let 
 :=
�R+ and set

PB(d!; dt) :=dt
P(d!); L2(B) :=L2(
;Prog;PB);

namely

L2(B)=
�
H : 
�R+!R

��������H is progressive, kH kL2(B)2 :=E

�Z
0

1
Ht
2dt
�
<1

�
:

As usual with Lp spaces, we identify two processes H , H~ if kH ¡H~ kL2(B)=0.
Note that the definition of L2(B) is meaningful, since trajectories of H are measurable

by Lemma 3.14 and so
R
0

1
Ht
2dt is a well-defined random variable (with values in [0;+1]).

Since L2(B) =L2(
;Prog;PB) is an L2-space, it is complete and Hilbert; it is immediate
to check that, if H 2 bE , then H 2L2(B) as well, namely

bE �L2(B):

Since hBit= t, Proposition 6.3 can be restated as follows: the stochastic integral

IB: bE 3H 7! IBH :=
Z
0

�
HsdBs2H2;c

is a linear isometry between (bE ; k�kL2(B)) and H2;c, since by (6.3) we have

kIBHkH2;c
2 =E

�Z
0

1
Hs
2 dhBis

�
=E

�Z
0

1
Hs
2 ds

�
= kHkL2(B)2 :

Since H2;c is a Hilbert space (in particular it is complete, cf. Proposition 5.14), it follows
that IB extends uniquely to a isometry defined on the closure of bE in L2(B); compare to
the construction of Wiener integral from Lemma 1.12. It remains to identify such closure.

Lemma 6.6. The space bE is dense in L2(B).

Proof. To show it, we invoke the following result from functional analysis:
Criterion for density in Hilbert spaces: Let E be a Hilbert space, V be a linear
subspace of E. Then V is dense in E if and only if, for any element w2E orthogonal to V ,
namely such that (w; v)E=0 for all v 2V , it must hold w=0. In other words, V is dense
if and only if V ?= f0g:

Since L2(B) is Hilbert and bE �L2(B) is a linear subspace, it suffices to show that
bE?= f0g. So let K 2 bE? and consider

X :=
Z
0

�
Kr dr;
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noting that K 2L2(B), so that P-a.s.
R
0

+1jKtj2 dt<1, Cauchy's inequality implies that
P-a.s.

R
0

T jKtjdt <1 for all T <1. In particular, X 2A.
We claim that X is a (continuous) martingale. If that is the case, then by Lemma 5.31,

X � 0 P-a.s., namely there exists a null set N �
 such that for all ! 2N cZ
s

t

Kr(!)dr=0 806 s< t:

Since intervals [s; t] generale B(R+), it then follows from Dynkin's lemma that for such !
we have Kt(!)=0 for Lebesgue-almost all t> 0, hence K =0 in L2(B) by Fubini.

It remains to show the claim that X is a martingale. X is adapted (since K is progres-
sively and integrable), and integrable by the Cauchy-Schwarz inequality (applied twice):

E[jXtj]6E
�Z

0

t

Ks
2 ds

�
1/2

t
p 6 kKkL2(B) t

p
:

Consider now H =1(s;t]1A with s< t and A2Fs. Then H 2 bE and since K?bE, we have

0= (H;K)L2(B)=E

�Z
0

1
HrKrdr

�
=E [1A(Xt¡Xs)]:

Since A2Fs was arbitrary, this proves that X is a martingale, concluding the proof. �

Theorem 6.7. (Itô integral and Itô isometry w.r.t. Brownian motion) Let H 2
L2(B). Then there exists a unique (up to indistinguishability) element of H2;c, which we
denote by (

R
0

t
HsdBs)t>0, such that for any sequence (H(n))n� bE with H(n)!H in L2(B)

we have

lim
n!1

E

"
sup
t>0

��������Z
0

t

HsdBs¡
Z
0

t

Hs
(n)dBs

��������2
#
=0:

We call
R
0

�
HsdBs the Itô integral, or the stochastic integral, of H w.r.t. B. Moreover, the

map L2(B)3H 7!
R
0

�
HsdBs2H2;c is a linear isometry, namely Itô's isometry holds:

E

��Z
0

1
HsdBs

�
2
�
=E

�Z
0

1
Hs
2ds

�
: (6.4)

Moreover the quadratic variation of
R
0

�
HsdBs is given by�Z

0

�
HsdBs

�
t

=
Z
0

t

Hs
2ds 8t2 [0;1]: (6.5)

Proof. Let (H(n))n� bE be such that kH ¡H(n)kL2(B)! 0 (since bE is dense in L2(B),
such a sequence must exist). Since the stochastic integral on bE is linear

E

"
sup
t>0

�Z
0

t

Hs
(n)dBs¡

Z
0

t

Hs
(m)dBs

�
2
#
6 4kH(n)¡H(m)kL2(B)! 0

as m; n!1. As a consequence, the sequence (IBH(n))n is Cauchy in H2;c, which is
complete, and so it must admit a limit point in H2;c; denote it by

R
0

�
HsdBs.
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It then holds







Z
0

�
HsdBs










H2;c

2

= lim
n!1









Z
0

�
Hs
ndBs










H2;c

2

= lim
n!1

kHnkL2(B)= kHkL2(B)

proving (6.4). We now want to show that the definition of
R
0

�
HsdBs does not depend on the

chosen sequence (H(n))n� bE; to this end, let (H~ (n))n� bE be another sequence converging
to H in L2(B) (possibly H~ (n)=H(n)). Then by linearity of the stochastic integral and Itô
isometry (valid on bE)

lim
n!1









Z
0

�
Hs
(n)dBs¡

Z
0

�
H~s
(n)dBs










H2;c

2

= lim
n!1









Z
0

�¡
Hs
(n)¡H~s

(n)�dBs








H2;c

2

= lim
n!1

kH(n)¡H~ (n)kL2(B)2

6 lim
n!1

(kH(n)¡HkL2(B)+ kH ¡H~ (n)kL2(B))2

=0:

Since IBH(n)!
R
0

�
HsdBs, by the above estimate the same must hold for IBH~ (n) as well.

Linearity of the map H 7!
R
0

�
HsdBs is a consequence of the same linearity on bE, and a

passage to the limit procedure. So it only remains to show (6.5).
Notice that, if H(n)!H in L2(B), then by Cauchy

sup
t>0

��������Z
0

t

Hs
2 ds¡

Z
0

t¡
Hs
(n)�2ds��������6Z

0

+1����Hs
2¡
¡
Hs
(n)�2����ds

=
Z
0

+1����Hs¡Hs
(n)���� ����Hs+Hs

(n)����ds
6kH ¡H(n)kL2(R+)(kH kL2(R+)+ kH

(n)kL2(R+)):

Taking expectation and applying another Cauchy inequality, we get

E

"
sup
t>0

��������Z
0

t

Hs
2 ds¡

Z
0

t¡
Hs
(n)�2ds��������

#
6E[kH ¡H(n)kL2(R+)(kHkL2(R+)+ kH

(n)kL2(R+))]

6kH ¡H(n)kL2(B) (kH kL2(B)+ kH(n)kL2(B))

6
�
kHkL2(B)+ sup

n
kH(n)kL2(B)

�
kH ¡H(n)kL2(B)! 0

as n!1; this is because, if H(n)!H in L2(B), then kH(n)kL2(B)!kHkL2(B) and so

supn kH(n)kL2(B)<1. Therefore the martingales Mn= IBH(n); M = IBH 2H2;c are such
that (recall the equivalent norm on H2;c coming from Proposition 5.14)

lim
n!1

 
E
�
sup
t>0

jMt
n¡Mtj2

�
+E

"
sup
t>0

��������hMnit¡
Z
0

t

Hs
2 ds
��������
#!

=0:

Since (Mn)2¡hMni is a martingale for each n, passing to the limit M2¡
R
0

t
Hs
2ds is also

a martingale, so that hIBH i�=
R
0

�
Hs
2 ds, proving (6.5). �

Exercise. Compute E[(
R
0

t
BsdBs)2] for a Brownian motion B (i.e. you must get an explic-

itly number at the end).
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6.3 Stochastic integration w.r.t. M 2H2;c

Our next aim is to define the stochastic integral
R
0

t
HsdMs for M 2 H2;c and for suit-

able integrands H . This can be accomplished very similarly to the Brownian case. Recall
from Proposition 6.3 that, for any H =

P
k=0
n¡1 hk1(tk;tk+1]2 bE and M 2H2;c, the processR

0

�
HsdMs is also in H2;c and







Z

0

�
HsdMs










H2;c

2

=E

�Z
0

1
Hs
2dhM is

�
: (6.6)

Let now again 
 :=
�R+, Prog be the progressive �-algebra, and set

PM(d!; dt) := hM i(!;dt)P(d!);

By the above we mean that, for any (!; t)-measurable and bounded function F : 
�!R,Z

�
F (!; t)PM(d!; dt)=

Z



Z
0

+1
F (!; t) hM i(!; dt)P(d!)=E

�Z
0

+1
Ft dhM it

�
where the last identity comes from interpreting F as a stochastic process with measurable
trajectories (which is why we omit the !2
 inside E as usual). Notice that, for bounded
F , the above quantity is finite since

E

�Z
0

+1
jFtj dhM it

�
6 kF kL1(
�)E

�Z
0

+1
1dhM it

�
= kF kL1(
�)E[hM i1]<1

since E[hM i1]=kM kH2;c<1 by Corollary 5.25. Moreover set L2(M) :=L2(
;Prog;PM),
namely

L2(M)=
�
H: 
�R+!R

��������H is progressive and kHkL2(M)
2 :=E

�Z
0

1
Ht
2dhM it

�
<1

�
;

which is a Hilbert space with inner product

(H;K)L2(M)=E

�Z
0

1
HtKtdhM it

�
:

Remark 6.8. As before, we identify processes H; H~ as the same element in L2(M) if
kH ¡H~ kL2(M)=0. This condition is now slightly more subtle than in the Brownian case:
if u 7! hM iu is constant on some interval [s; t], then H can take any value therein and yet
it will be identified with 0 on [s; t]. In the extreme case whereM is constant and hM i�0,
any process will be identified with 0. The point is exactly that we only care about the
result stochastic integral

R
0

�
HsdMs, and if M is constant then formally �dM � 0�.

With these notations in mind, the Itô isometry (6.6) shows that the map

IM: bE 3H 7! IMH :=
Z
0

�
HsdMs2H2;c

is an isometry between (bE ; k�kL2(M)) and H2;c, and thus it can be uniquely extended to
an isometry on the closure of bE in L2(M).

Going through the same proof line-by-line as in Lemma 6.6, one can then shows that
bE is dense in L2(M); we only have to redefine X :=

R
0

�
Kr dhM ir in that proof (before we

took X =
R
0

�
Kr dr=

R
0

�
Kr dhBir).

Exercise. Prove by yourself density of bE in L2(M) by following the above guidelines.

This leads to the following result:
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Theorem 6.9. (Itô integral for M 2H2;c) For M 2H2;c, there is a unique linear
isometry

L2(M)3H 7!
Z
0

�
HsdMs2H2;c

which is an extension of IM. We call
R
0

�
HsdMs the stochastic integral or Itô integral of H

with respect to M.
In other words, for any H 2L2(M), there exists a sequence (Hn)�bE such that Hn!H

in L2(M), and for any approximating sequence Hn!H in L2(M), we have
R
0

�
Hs
ndMs!R

0

�
HsdMs in H2;c.
The quadratic variation of

R
0

�
HsdMs is given by�Z

0

�
HsdMs

�
t

=
Z
0

t

Hs
2 dhM is 8t2 [0;+1] (6.7)

and we have the Itô isometry

E

��Z
0

�

HsdMs

�
2
�
=E

�Z
0

�

Hs
2 dhM is

�
(6.8)

for all stopping times � (including e.g. � �+1).

Proof. The first part follows immediately from the fact that IM is an isometry, bE is
dense in L2(M), and H2;c is complete; the second part follows arguing like in Theorem 6.7.
Finally, (6.8) follows from Corollary 5.39. �

Exercise. Find another formula for E[(
R
0

t
MsdMs)2] when M 2H2;c; compare this to the

case M =B by a previous exercise.

Next, we want to discuss a characterizing property of the stochastic integral (which in
fact can be used to provide an alternative, more functional analytic way of constructing it).
As a preparation, we need to upgrade Lemma 5.34 to a version which is more suitable for
stochastic integrals; as therein, one should think of it as a version of the Cauchy-Schwarz
inequality for stochastic integrals.

Lemma 6.10. (Kunita�Watanabe inequality, v2) Let M;N 2Mloc
c and let H;K be

measurable processes such that almost surely
R
0

1 jHtKtjdV (hM;N i)t<1. Then almost
surely ��������Z

0

1
HtKtdhM;N it

��������6Z
0

1
jHtKtjdV (hM;N i)t

6
�Z

0

1
jHtj2dhM it

�
1/2
�Z

0

1
jKtj2dhN it

�
1/2

:

Proof.
We skipped the proof in the lectures for lack of time and because it's mostly a technical
extension of Lemma 5.34 which was already shown; the full proof is included anyway in
the lecture notes for completeness.

Recall from Lemma 5.34 that we already showed the inequality for H =K=1, i.e.

jhM;N is;tj6V (hM;N i)s;t6 hM is;t
1/2hN is;t

1/2
:

If now H;K are elementary processes (not necessarily F-progressive), in the sense that

H =
X
j=0

n¡1

hj1(tj ;tj+1]; K =
X
j=0

n¡1

kj1(tj;tj+1];
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then by definition of Lebesgue�Stjeltes integrals and Cauchy inequality we find��������Z
0

1
HtKt dhM;N it

��������=
������������Xj=0
n¡1

hjkjhM;N itj ;tj+1

������������
6
X
j=0

n¡1

jhj j jkj jjhM;N ijtj;tj+1

6
X
j=0

n¡1

jhj j jkj jhM is;t
1/2hN is;t

1/2

6

0@X
j=0

n¡1

jhj j2hM is;t

1A1/20@X
j=0

n¡1

jkj j2hN is;t

1A1/2

=
�Z

0

1
jHtj2dhM it

�
1/2
�Z

0

1
jKtj2 dhN it

�
1/2

:

By the usual approximation arguments, we can extend the inequalities to be valid e.g. for
all bounded measurable processes H; K. As usual, we can then relax the boundedness
assumption to almost sure finiteness of

R
0

1 jHtKtjdV (hM;N i)t. �

--------------------- End of the lecture on December 19 ---------------------

Theorem 6.11. (Characterization of the stochastic integral) Let M 2H2;c and
H 2L2(M). The stochastic integral

R
0

�
Hs dMs is the unique element in H2;c starting at 0

such that �Z
0

�
HsdMs; N

�
=
Z
0

�
HsdhM;N is for all N 2H2;c: (6.9)

Proof. Let us first show that there can be at most one process starting at 0 satisfying (6.9):
if X;Y 2H2;c satisfy (6.9) with

R
0

�
HsdMs replaced by X or Y , then for all N 2H2;c it holds

hX ¡Y ;N i=hX;N i¡ hY ;N i=
Z
0

�
HsdhM;N is¡

Z
0

�
HsdhM;N is=0;

taking N =X ¡Y , we deduce that X ¡Y =0.
Notice that, in the existence part, we may assume wlog thatM0=0. Indeed, otherwise

we may replaceM by M ¡M0, and it holds hM ¡M0;N i= hM;N i; therefore the unique-
ness part shows that the stochastic integrals with respect toM andM ¡M0 have to agree
(loosely speaking, �dM =d(M ¡M0)�).

To see that
R
0

�
Hs dMs satisfies (6.9), we divide the proof in two steps. Notice that we

can assume wlog M0=0, since M0 does not play any role in the definition of
R
0

�
HsdMs.

Step 1: H 2 bE. Let H =
P

k=0
n¡1 hk1(tk;tk+1] 2 bE and let N 2 H2;c. We claim that

(
R
0

�
Hs dMs)N ¡

R
0

�
Hs dhM;N is is a martingale, which by definition of h�; �i yields (6.9).

Since h�; �i is linear in each entry, H 7!
R
0

�
HdM is linear and so is relation (6.9), it suf-

fices to verify the claim for hk1(tk;tk+1]; therefore we only need to show that�Z
0

t

HsdMs

�
Nt¡

Z
0

t

HsdhM;N is=hk (Mtk^t;tk+1^tNt¡hM;N itk^t;tk+1^t)

is a martingale. Let us set

Jt :=Mtk^t;tk+1^tNt¡hM;N itk^t;tk+1^t;

88 Section 6



By Proposition 5.24-c), we have

Mtk+1^tNt¡hM;N itk+1^t=Mt
tk+1Nt¡hM tk+1; N it

which is a martingale by the definition of h�; �i; the same argument holds for tk+1 replaced
by tk, and so by linearity J is a martingale.

We now want to show that hkJ is a martingale as well, where hk2Ftk is bounded. We
argue as in the proof of Proposition 6.3: we only need to consider the case tk6s6 t, as the
case s6 tk6 t reduces to this one by the tower property of conditional expectation, and
the case s6 t6 tk is trivial (everything is 0). When tk6 s6 t, since hk is Ftk-measurable
and J is a martingale, we get

E[hkJtjFs] =hkE[JtjFs]=hkJs:

Overall, this concludes the proof of (6.9) when H 2 bE .
Step 2: extension to H 2L2(M) by density. Let H 2L2(M), then by density there exists

a sequence fH(n)gn� bE such that H(n)!H in L2(M); by Step 1, for each n,�Z
0

�
Hs
(n) dMs

�
N ¡

Z
0

�
Hs
(n) dhM;N is

is a martingale; to conclude, it suffices to show that, for any fixed t> 0,�Z
0

t

Hs
(n) dMs

�
Nt¡

Z
0

t

Hs
(n) dhM;N is!

�Z
0

t

HsdMs

�
N ¡

Z
0

t

HsdhM;N is in L1(
):

Convergence of the first term is immediate, since by construction of the stochastic inte-
gral we have

R
0

�
H(n) dM!

R
0

�
H dM in H2;c. For the second term, by linearity and the

Kunita�Watanabe inequality (with H~:=(H(n)¡H) 1[0;t], K=1) we have

E

���������Z
0

t

Hs
(n) dhM;N is¡

Z
0

t

HsdhM;N is
�������� �=E

���������Z
0

+1
H~sdhM;N is

�������� �
6E
��Z

0

t����Hs
(n)¡Hs

����2dhM is
�
1/2

hN i1
1/2
�

6E
�Z

0

t����Hs(n)¡Hs

����2dhM is
�
E[hN i1]1/2

6kHn¡HkL2(M) kN kH2;c! 0

as n!1, where in the intermediate passage we applied Cauchy's inequality. �

Exercise. Find a formula for h
R
0

�
Bs dBs; Bit, where B is a Brownian motion B, and

compute E[h
R
0

�
BsdBs; Bit].

Corollary 6.12. Let M 2H2;c and H 2L2(M).

i. For any stopping time �, it holds that�Z
0

�
HsdMs

��
=
Z
0

�
1[0;� ](s)HsdMs=

Z
0

�
HsdMs

�:

ii. For any other N 2H2;c and K 2L2(N), we have�Z
0

�
HsdMs;

Z
0

�
KsdNs

�
=
Z
0

�
HsKsdhM;N is: (6.10)
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Notice that, for M =N, H =K we recover formula ( 6.7).

iii. Associativity of the stochastic integral: Let K be progressively measurable. Then
KH 2L2(M) if and only if K 2L2(

R
0

�
HsdMs); in that case, we haveZ

0

�
KsHsdMs=

Z
0

�
Ksd

�Z
0

�
Hr dMr

�
s

:

Proof.

i. We apply our characterization of stochastic integrals, Theorem 6.11: for all N 2H2;c��Z
0

�
HsdMs

��
;N

�
=
�Z

0

�
HsdMs; N

��
=
�Z

0

�
HsdhM;N is

��
=
Z
0

�
1[0;� ](s)HsdhM;N is

=
Z
0

�
HsdhM;N is�

=
Z
0

�
HsdhM � ;N is:

The second line shows that (
R
0

�
HsdMs)�=

R
0

�
1[0;� ](s)HsdMs and the last line shows

that (
R
0

�
HsdMs)� =

R
0

�
HsdMs

�.

ii. The Lebesgue-Stieltjes integral on the r.h.s. of (6.10) is well defined by the Kunita-
Watanabe inequality. To prove (6.10), we apply Theorem 6.11 twice, together with
the associativity of the Lebesgue-Stieltjes integral (Remark 5.9):�Z

0

�
HsdMs;

Z
0

�
KsdNs

�
=
Z
0

�
Hsd

�
M;

Z
0

�
Kr dNr

�
s

=
Z
0

�
Hsd

�Z
0

�
Kr dhM;N ir

�
s

=
Z
0

�
HsKsdhM;N is:

iii. We have h
R
0

�
HsdMsi=

R
0

�
Hs
2dhM is, so again by Remark 5.9Z

0

�
Ks
2d
�Z

0

�
Hr
2dhM ir

�
s

=
Z
0

�
(KsHs)2dhM is;

so we see that K 2L2(
R
0

�
Hs dMs) if and only if KH 2L2(M). Moreover, for any

N 2H2;c, similarly as in Part ii. we have:�Z
0

�
KsHsdMs; N

�
=
Z
0

�
KsHsdhM;N is=

Z
0

�
Ksd

�Z
0

�
Hr dhM;N ir

�
s

=
Z
0

�
Ksd

�Z
0

�
Hr dMr;N

�
s

=
�Z

0

�
Ksd

�Z
0

�
Hr dMr

�
s

;N

�
;

which by Theorem 6.11 implies the conclusion. �

Exercise. LetB,B~ be independent Brownian motions; show that, for any t>0,B2L2(B~ t)
and B~ 2L2(Bt), and compute �Z

0

�
BsdB~s;

Z
0

�
B~sdBs

�
t

:
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Exercise. Let B be a Brownian motion, let T >0 and let H 2L2(BT). Find a formula for�Z
0

�
Hr dBrT

�
t

for t> 0:

Alternative construction of stochastic integrals (not examinable): The arguments
from Theorem 6.11 and Corollary 6.12, and in particular formula (6.9), can be actually used
to directly construct stochastic integrals in a more functional analytic manner, completely
bypassing the approximations by bounded elementary processes. The argument goes as
follows.

Given M 2H2;c and H 2L2(M), we can define a linear operator I:H2;c!R by

I(N) :=E

�Z
0

1
HsdhM;N is

�
: (6.11)

This is a bounded operator, since by the Yamada�Watanabe and Cauchy inequalities it
holds

jI(N)j6E
��Z

0

+1
Hs
2 dhM is

�
1/2

hN i1
1/2
�
6 kHkL2(M) kN kH2;c:

Since H2;c is a Hilbert space, by the Riesz representation theorem there exists a unique
element M~ 2H2;c such that I(N)= hM;N iH2;c for all N 2H2;c, namely

E[M~1N1] =E

�Z
0

1
HsdhM;N is

�
8N 2H2;c:

Let � be any bounded stopping time; applying the above property to N replaced by N �,
arguing as in Corollary 6.12 and using the optional sampling theorem, one finds

E[M~�N�]=E[M~1N1� ]

=E

�Z
0

1
HsdhM;N � is

�
=E

�Z
0

�

HsdhM;N is
�
:

By Exercise Sheet 6, this implies that M~N ¡
R
0

�
HsdhM;N is is a (continuous) martingale;

moreover one can show that M~0=0 by taking Nt(!)=1A(!) for A2F0. Therefore

hM~ ;N i=
Z
0

�
HsdhM;N is 8N 2H2;c;

which as we just saw characterizes the stochastic integral. In other words,M~ coming from
the application of Riesz theorem to I defined by (6.11) coincides with

R
0

�
HsdMs.

6.4 Stochastic integration w.r.t. M 2Mloc
c

We can now use localization arguments to extend our definition of stochastic integrals to
integrands M which are only continuous local martingales, not necessarily in H2;c. And
even forM 2H2;c, the following considerations allow us to consider more general integrands
than H 2L2(M).

Definition 6.13. (Lloc
2 (M)) For M 2Mloc

c , we denote by Lloc
2 (M) the space of progres-

sively measurable processes H which satisfy

P

�Z
0

T

Hs
2dhM is<1

�
=1; for all T > 0:
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Exercise. Show that any càdlàg adapted process H is in Lloc
2 (M), for any M 2Mloc

c .

Theorem 6.14. (Localization of the stochastic integral) Let M 2Mloc
c and let

H 2Lloc2 (M). Then:

i. There exists a unique process X 2Mloc
c such that X0=0 and

hX;N i=
Z
0

�
HsdhM;N is 8N 2Mloc

c :

We write
R
0

�
HsdMs :=X and call this process the Itô integral or stochastic integral

of H against M.

ii. For any stopping time �, we haveZ
0

�
Hs1[0;� ](s)dMs=

�Z
0

�
HsdMs

��
=
Z
0

�
HsdMs

�:

iii. For any other N 2Mloc
c and K 2Lloc2 (N), we have�Z

0

�
HsdMs;

Z
0

�
KsdNs

�
=
Z
0

�
HsKsdhM;N is: (6.12)

iv. For progressive K, we have K 2Lloc
2 (
R
0

�
HsdMs) if and only KH 2Lloc2 (M); in that

case Z
0

�
KsHsdMs=

Z
0

�
Ksd

�Z
0

�
Hr dMr

�
s

:

v. If M 2H2;c and H 2L2(M), then
R
0

�
HsdMs is the same process that we constructed

in Theorem 6.9; in other words, this notion of stochastic integral is a consistent
extension of the previous one.

Proof. i.: Uniqueness is clear by the usual argument: if X; Y 2Mloc
c satisfy X0= Y0=0

and hX;N i= hY ;N i for all N 2Mloc
c , then X¡Y 2Mloc

c with hX ¡Y i=0, and therefore
X ¡Y � 0.

For the construction of
R
0

�
HsdMs, as before we may assume thatM0=0; otherwise, we

can consider M ¡M0, which satisfies hM;N i= hM ¡M0; N i.
Let

�n= inf
�
t> 0:

Z
0

t

(1+Hs
2) dhM is>n

�
;

which is a localizing sequence by the definition of H 2Lloc2 (M). ThenM �n2H2;c (by Corol-
lary 5.40) and H 2L2(M �n); therefore we can define the stochastic integral

R
0

�
Hs dMs

�n2
H2;c using Theorem 6.9. For m>n, we get�Z

0

�
HsdMs

�m

��n
=
Z
0

�
Hsd(M �m)s

�n=
Z
0

�
HsdMs

�n;

so that we can define without ambiguity�Z
0

t

HsdMs

�
1ft6�ng :=

�Z
0

t

HsdMs
�n

�
1ft6�ng

to obtain a unique process
R
0

�
Hs dMs such that (

R
0

�
Hs dMs)�n=

R
0

�
Hs dMs

�n for all n. In
particular,

R
0

�
HsdMs2Mloc

c by definition, with localizing sequence being given exactly by
f�ngn; we also have

R
0

0
HsdMs=0 by definition.
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Given N 2Mloc
c , similarly we may assume without loss of generality that N0 = 0,

since the quadratic covariation does not depend on N0. Let �n0 = inf ft> 0: hN it>ng and
�n= �n^ �n0 . Then N�n2H2;c and�Z

0

�
HsdMs;N

��n
=
��Z

0

�
HsdMs

��n
; N�n

�
=
�Z

0

�
HsdMs

�n; N�n

�
=
Z
0

�
HsdhM�n; N�nis=

Z
0

�
HsdhM;N is

�n=
�Z

0

�
HsdhM;N is

��n
;

so for n!1 we get h
R
0

�
HsdMs; N i=

R
0

�
HsdhM;N is:

Properties ii. and iv. of the integral
R
0

�
HsdMs then follow via localization from Corol-

lary 6.12; iii. follows from applying part i. twice together with the associativity of Lebesgue-
Stjeltes integrals. Finally, v. comes from the characterizing property of Theorem 6.11. �

Exercise. LetB be a Brownian motion,H2Lloc
2 (B). What can we say aboutE

�R
0

1
HsdBs

�
?

Remark 6.15. Let M 2Mloc
c and H 2Lloc

2 (M). Then
R
0

�
Hs dMs2Mloc

c is a continuous
local martingale starting from 0 and by (6.12) (withM=N ,H=K), its quadratic variation
is given by �Z

0

�
HsdMs

�
t

=
Z
0

t

Hs
2dhM is: (6.13)

By Corollary 5.40, we deduce the following: if

E

�Z
0

t

Hs
2dhM is

�
<1 8t> 0;

then
R
0

�
HsdMs2M2;c (and not just Mloc

c ); being a genuine martingale, it satisfies

E

�Z
0

t

HsdMs

�
=0; E

��Z
0

t

HsdMs

�
2
�
=E

�Z
0

t

Hs
2dhM is

�
8t> 0:

If additionally

E

�Z
0

1
Hs
2dhM is

�
<1;

then
R
0

�
HsdMs2H2;c. In that case, we may write H 2L2(M), even though M 2/H2;c.

--------------------- End of the lecture on January 8 ---------------------

Exercise. Strengthen the above result as follows: if M 2Mloc
c , H 2Lloc2 (M) are such that

E

��Z
0

t

Hs
2dhM is

�
1/2
�
8t> 0

then
R
0

�
HsdMs is a genuine martingale, and in particular E[

R
0

t
HsdMs] = 0 for all t> 0.

Example 6.16.

i. If B is a Brownian motion and G;H 2Lloc2 (B), then�Z
0

�
GsdBs;

Z
0

�
HsdBs

�
t

=
Z
0

t

GsHsds;
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in particular, we get a natural extension of formula (6.7):�Z
0

�
HsdBs

�
t

=
Z
0

t

Hs
2ds:

ii. Every càdlàg adapted process H belongs Lloc
2 (M), for all M 2Mloc

c . But in general
we do not have E[

R
0

t
Hs
2 dhM is]<1. Consider for example a Brownian motion B

and the integrand Hs= eBs
4
. Then

E

�Z
0

t

Hs
2 ds

�
=E

�Z
0

t

e2Bs
4
ds
�
=
Z
0

t
�

1
2�s

p
Z
R
e2x

4
e
¡x2

2s dx
�
ds;

and the inner integral is infinite for all s> 0.

6.5 Stochastic integration w.r.t. continuous semimartingales

Recall that a continuous semimartingale X is an adapted process

X =X0+M +A;

whereM 2Mloc
c withM0=0 and A2A with A0=0, and that this decomposition is unique

because A\Mloc
c = f0g up to indistinguishability.

Definition 6.17. Let X =X0+M +A be a continuous semimartingale. We define

L(X) :=
�
H 2Lloc

2 (M):
Z
0

t

jHsjdV (A)s<1 almost surely for all t> 0
�
;

or equivalently

L(X) :=
�
H progressive:

Z
0

t

jHsjdV (A)s+
Z
0

t

Hs
2 dhM i<1 almost surely for all t> 0

�
:

For H 2L(X), we define Z
0

�
HsdXs :=

Z
0

�
HsdMs+

Z
0

�
HsdAs

where the first term is interpreted as in the stochastic sense coming from Theorem 6.14,
while the second term is interpreted in the Lebesgue-Stjeltes sense.

Remark 6.18. Let H be progressively measurable and locally bounded , in the sense that

sup
t2[0;T ]

jHt(!)j<+1 8T 2 (0;+1)

for P-a.e. !. Then H 2L(X) for every continuous semimartingale X .

Lemma 6.19. The following hold:

i. Let Hs(!) =
P

k=0
n¡1 hk(!)1(tk;tk+1](s), for some real-valued Ftk�measurable random

variables hk. Then H 2L(X) for any continuous semimartingale X andZ
0

t

HsdXs=
X
k=0

n¡1

hk(Xtk+1^t¡Xtk^t): (6.14)
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ii. Let � be a stopping time and let h a real-valued, F�-measurable random variable; let
H :=h1[� ;1) (with the convention that 1[� ;1)� 0 when � =+1). Then H 2L(X)
for any continuous semimartingale X andZ

0

t

HsdXs=h(Xt¡X�^t):

Proof. Since hk are real-valued and the sum is finite, it is clear that supt>0 jHt(!)j<1
for every !, so that H 2L(X); similarly for H =h1[� ;1) in ii. Let X =X0+M +A; both
identities are true for integration w.r.t. A by (!-wise) properties of Lebesgue-Stjeltes
integral, and X0 does not play any role, therefore wlog we may assume X =M with
M 2Mloc

c ,M0=0. By localization, we may further reduce ourselves to the case of M 2H2;c.
In part ii., up to another localization/approximation procedure (cf. Corollary 5.41, or

the upcoming Section 6.6), we may further assume that h2L1(
).
The rest of the proof is left as an exercise in Exercise Sheet 10. �

Overall in this chapter we have constructed various stochastic integrals, under different
assumptions on the integrand H and the integrator M as �input variables�, obtaining an
integral process

R
0

�
HsdMs in different classes of processes as an �output�. In the following

table, we summarize these results; we write Sc for the space of continuous semimartingales.

H 2 � M 2 �
Z
0

�
HsdMs2 �

L2(M) H2;c H2;c

Lloc
2 (M) Mloc

c Mloc
c

L2(M) Mloc
c H2;c

Lloc
2 (M) + E

�Z
0

t

Hs
2dhM is

�
<18t> 0 Mloc

c M2;c

L(M) Sc Sc

6.6 Approximations of stochastic integrals
Recall the ucp-convergence from Definition 5.15; it is a natural notion of convergence for
stochastic integrals, as the next results show.

Proposition 6.20. (�Dominated convergence� for stochastic integrals) Let X be
a continuous semimartingale; let fH(n)gn; H be progressively measurable and such that
P-almost surely

Ht
(n)!Ht 8t> 0:

Further assume that there exists K 2L(X) with K > 0, such that P-almost surely����Ht
(n)����6Kt 8t> 0: (6.15)

Then (H(n)); H �L(X) and
R
0

�
Hs
(n)dXs!

R
0

�
HsdXs in ucp.

Proof. Since
����Hs

(n)����6Ks and jHsj6Ks with K 2L(X), we clearly have H(n);H 2L(X).
Let X =X0+M +A be the semimartingale decomposition of X; to show the ucp conver-
gence, we similarly decompose

R
0

�
Hs
(n)dXs=

R
0

�
Hs
(n)dMs+

R
0

�
Hs
(n)dAs and treat the two

terms separately.
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For the finite variation terms
R
0

�
Hs
(n)dAs, the ucp convergence follows by the (usual)

dominated convergence theorem applied !-wise (so that one gets P-a.s. convergence uni-
formly on compact sets, which is stronger than ucp convergence).

For the local martingale part, note that by (6.13) we have�Z
0

�
Hs
(n)dMs¡

Z
0

�
HsdMs

�
=
�Z

0

�¡
Hs
(n)¡Hs

�
dMs

�
=
Z
0

�����Hs
(n)¡Hs

����2 dhM is;

as before, by the usual dominated convergence theorem applied !-wise, we deduce that the
above quadratic variation is converging to 0 in ucp as n!1. It then follows from Corol-
lary 5.41 that

R
0

�
Hs
(n)dMs!

R
0

�
HsdMs in ucp. �

Remark 6.21. A closer look at the proof reveals that we never need K to be progressive,
as long as it is nonnegative, with measurable trajectories and such that P-a.s.Z

0

T

KsdV (A)s+
Z
0

T

jKsj2 dhM is<1 8T > 0:

Indeed, we never integrate K w.r.t. M , but we only use K at the level of !-wise defined
Lebesgue-Stjeltes integrals (e.g. when checking that H 2L(X), or when applying classical
dominated convergence). In particular, assumption (6.15) holds if for almost all ! and all
T > 0 there exists CT(!) with jKt(!)j6CT(!) for all t2 [0; T ]. Indeed, in this case one
may take

Kt(!) :=
X
n=1

1
Cn(!)1[n¡1;1)(t):

Corollary 6.22. (�Stochastic integrals respect ucp convergence�) Let X be a con-
tinuous semimartingale; let fH(n)gn; H be continuous, adapted processes such that

H(n)!H in ucp:

Then
R
0

�
Hs
(n)dXs!

R
0

�
HsdXs in ucp.

Proof. SinceH(n) is continuous and adapted, it is progressive and therefore (by continuity)
H(n)2L(X); similarly for H .

SinceH(n)!H in ucp, by Lemma 5.16 we can extract a subsequence fH(nk)gk such that
P-a.s. H(nk)(!)!H(!) uniformly on compact sets. As a consequence of the properties of
uniform convergence on compact sets (see exercise below), we deduce that the process

Kt := sup
n2N

����Ht
(nk)
����+ jHtj

is continuous and adapted, thus in L(X), and assumption (6.15) is satisfies. We deduce
from Proposition 6.20 that

R
0

�
Hs
(nk)dXs!

R
0

�
HsdXs in ucp.

General fact from metric spaces: given a metric space (E; d), a sequence fxngn�E
and x2E, the following are equivalent:

i. xn!x in E, namely d(xn; x)! 0 as n!1.

ii. Any subsequence fxnjgj of fxngn admits a further subsequence fxnjkgk such that
x
njk!x in E, namely d(xnjk; x)! 0 as n!1.

96 Section 6



By the same argument as above, for any other given subsequence fH(nj)gj, we can extract

a further subsequence
�
H
(njk)

	
k such that

R
0

�
Hs
(n~jk)dXs!

R
0

�
HsdXs in ucp; since the upc

topology is induced by a distance (Lemma 5.16), the above fact implies that the whole
sequence

�R
0

�
Hs
(n) dXs

	
n converges. �

Exercise. Let ffngn, f be deterministic continuous functions from R+ to R such that
fn! f uniformly on compact sets. Show that

t 7! sup
n>0

jftnj

is a continuous function, bounded on compact sets.

Corollary 6.23. Let X be a continuous semimartingale and let H be a continuous, adapted
process. Let �n=ftkngk>0 be a sequence of deterministic, locally finite partitions with infin-
itesimal mesh. Then X

k=0

1

Htk
n(Xtk+1

n ^t¡Xtk
n^t)

!
t�0

¡!
Z
0

�
HsdXs in ucp:

Proof. This is a special case of Proposition 6.20, with Kt := sups2[0;t] jHsj and

Hn=
X
k=0

1

Htk
n 1(tkn;tk+1n ]

(cf. identity (6.14)). �

The next result already provides one important �rule of calculus� for stochastic integrals;
we will see later a far reaching generalization.

Theorem 6.24. (Integration by parts formula for stochastic integrals) Let X;Y
be continuous semimartingales. Then, up to indistinguishability, the following integration
by parts formula holds:

XtYt=X0Y0+
Z
0

t

XsdYs+
Z
0

t

YsdXs+ hX;Y it 8t> 0: (6.16)

In particular, for X =Y we find

Xt
2=X0

2+2
Z
0

t

XsdXs+ hX it 8t> 0: (6.17)

Proof. Exercise Sheet 10. �

Formula (6.16) may be formally written in differential form as

�d(XY )=XdY +Y dX +dhX;Y i:�

Exercise. Using formula (6.17), are you now able to show that if X is a continuous
semimartingale, then X2 is a continuous semimartingale?

Corollary 6.25. Let X be a continuous semimartingale. Then for any n 2N, up to
indistinguishability, it holds that

Xt
n=X0

n+
Z
0

t

nXs
n¡1dXs+

1
2

Z
0

t

n(n¡ 1)Xsn¡2dhX is 8t> 0:

Stochastic integration 97



With f(x)=xn, we can also write the above formula as

f(Xt)= f(X0)+
Z
0

t

f 0(Xs)dXs+
1
2

Z
0

t

f 00(Xs)dhX is:

Proof. Exercise Sheet 10. �

For practical purposes, Corollary 6.22 is often very useful; but when X =M 2Mloc
c ,

ucp convergence of the integrands can be drastically relaxed.

Definition 6.26. Let M 2Mloc
c and let H(n); H 2 Lloc2 (M). We say that H(n)!H in

Lloc
2 (M) if

lim
n!1

P

�Z
0

T����Hs
(n)¡Hs

����2 dhM is>"
�
=0 8"> 0; T 2 (0;+1):

Exercise. Show that, if H(n)!H in ucp, then H(n)!H in Lloc
2 (M).

Lemma 6.27. Let M 2Mloc
c . Then the following are equivalent:

a) H(n)!H in Lloc
2 (M);

b)
R
0

�
Hs
(n) dMs!

R
0

�
HsdMs in ucp.

Proof.
Proof skipped in the lectures, included here for completeness.

Set M~ (n) :=
R
0

�
Hs
(n)dMs, M~ :=

R
0

�
HsdMs. By Corollary 5.41, b) is equivalent to

hM~ (n)¡M~ i=
�Z

0

�¡
Hs
(n)¡Hs

�
dMs

�
=
Z
0

�����Hs(n)¡Hs

����2 dhM is! 0 in ucp:

But by definition,
R
0

�����Hs
(n)¡Hs

����2dhM is!0 in ucp coincides with H(n)!H in Lloc
2 (M). �

--------------------- End of the lecture on January 9 ---------------------

Definition 6.28. (Stratonovich integral) If X;Y are continuous semimartingales, then
we define the Stratonovich integral of Y w.r.t. X asZ

0

�
Ys �dXs :=

Z
0

�
YsdXs+

1
2
hX;Y i:

The motivation for considering this at first weird looking integral will become clear
later. For now let us just observe a couple of properties coming from the definition; the
first one may be interpreted as the fact that the Stratonovich integral arises from the limit
of Riemann-type sums obtained by using the trapezoidal rule.

Proposition 6.29. LetX;Y be continuous semimartingales. Let �n=ftkngk>0 be a sequence
of deterministic, locally finite partitions with infinitesimal mesh. Then X

k=0

1
1
2
(Ytk+1n ^t+Ytkn^t)(Xtk+1

n ^t¡Xtk
n^t)

!
t�0

¡!
Z
0

�
Ys �dXs in ucp:
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Moreover the following integration by parts formula for Stratonovich integrals holds:

XtYt=X0Y0+
Z
0

t

Xs �dYs+
Z
0

t

Ys �dXs: (6.18)

Proof. Exercise Sheet 11. �

Note that, differently from (6.17), formula (6.18) now does not contain any quadratic
covariation term and resembles the usual integration by parts rule from classical calculus.
In the same way in which standard integration by parts comes from integrating the product
rule for derivatives (fg)0= fg 0+ f 0g, here (6.18) may be formally written as

��d(XY )=X �dY +Y �dX:�

7 Main theorems of stochastic analysis

We are now ready to present the main �rules of stochastic calculus�. In this section, we will
constantly work with vector-valued processes, therefore we need to extend the definition
of stochastic processes considered so far to this setting.

Definition 7.1. We say that a Rd-valued process X = (X1; :::; Xd) is a d-dimensional
continuous semimartingale if each of its coordinates X i is a real-valued continuous semi-
martingale. Similarly for d-dimensional martingales and continuous local martingales.

Exercise. Show that X is a d-dimensional continuous semimartingale (resp. martingale,
resp. continuous local martingale) if and only if, for all �2Rd, � �X=

P
i=1
d �iX i is a real-

valued continuous semimartingale (resp. martingale, resp. continuous local martingale).

7.1 Itô's formula
Given a function f 2C2(Rd;R), f(x) = f(x1; :::; xd), we will use the following notations
for its partial derivatives:

@if =
@
@xi

f ; @ijf =
@2

@xi@xj
f:

We denote the gradient, Hessian and Laplacian of f respectively by

rf(x)=

0@ @1f(x)
���

@df(x)

1A; D2f(x)= (@ij f(x))i;j=1d �f(x)=
X
i=1

d

@iif(x);

so that rf :Rd!Rd, D2f :Rd!Rd�d, �f :Rd!R. Recall that by Schwartz's theorem
@ijf = @jif , so that D2f(x) is a symmetric matrix.

Theorem 7.2. (Itô's formula) Let X = (X1; :::; Xd) be a d-dimensional continuous
semimartingale and f 2C2(Rd;R). Then f(X) is a continuous semimartingale and (up to
indistinguishability)

f(Xt)= f(X0)+
X
i=1

d Z
0

t

@if(Xs)dXsi+
1
2

X
i;j=1

d Z
0

t

@ijf(Xs)dhX i; X jis 8t> 0: (7.1)
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Before delving into the proof, some comments are in order.

i. If a is a function of finite variation, then we have seen that for f 2C1(R;R) it holds

f(at)¡ f(a0)=
Z
0

t

f 0(as) das;

this can be shown by considering telescopic sums. On the other hand, we have
already seen in Corollary 6.25 that, at least for polynomial f :R!R and continous
semimartingales X , it must hold

f(Xt)¡ f(X0)=
Z
0

t

f 0(Xs) dXs+
1
2

Z
0

t

f 00(Xs) dhX is;

formula (7.1) is a natural multidimensional generalization of this one.

The additional second order term 1

2

P
i;j

R
0

t
@ijf(Xs)dhX i; X jis in (7.1), some-

times called �Itô corrector�, marks the transition from standard analysis calculus
(valid for finite variation functions) to stochastic calculus (which involves less reg-
ular processes, like martingales).

ii. Itô's formula shows that semimartingales remain semimartingales under composition
with C2 functions; moreover it provides an explicit formula for the decomposi-
tion of f(Xt) into its bounded variation and local martingales components (find
it as an Exercise). Recall that for M 2Mloc

c and f 2C2, we do not have f(M)2
Mloc

c in general, i.e. local martingales are not closed under the composition with
C2 functions: just think of X =B Brownian motion and f(x)=x2.

iii. It is common and often convenient to write Itô's formula (7.1) in �differential� form
as

df(Xt)=
X
i=1

d

@if(Xt)dXt
i+ 1

2

X
i;j=1

d

@ijf(Xt)dhX i; X jit: (7.2)

Introducing the notation hX i = (hX i; X ji)i;j=1d (so that hX i is a Rd�d-valued
process of finite variation) and the Frobenius product for matrices

A:B :=
X
i;j=1

d

AijBij ;

eq. (7.2) can be written compactly as

df(Xt)=rf(Xt) � dXt+
1
2
D2f(Xt): dhX it:

In order to prove Itô formula, we need some preliminaries.

Fact. Let fXngn, X be continuous processes, then the following are equivalent:

1. Xn!X in ucp.

2. Every subsequence fXnkgk admits a subsubsequence fXnkjgj such that for P-a.e.
!, X

nkj(!)!X(!) uniformly on compacts sets as j!1.

Exercise. With the help of Lemma 5.16, prove the above Fact.
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Lemma 7.3. Let X, Y be continuous semimartingales and let H be a continuous adapted
process. Let �n = ftkngk2N be a sequence of deterministic, locally finite partitions with
infinitesimal mesh. ThenX

k

Htk
nXt^tkn;t^tk+1n Yt^tkn;t^tk+1n !

Z
0

t

HsdhX;Y is in ucp:

Proof. By polarization, it suffices to show the statement for X =Y .
By Lemma 5.45 and Lemma 5.16, we can find a (not relabelled for simplicity) subse-

quence such that for P-a.e. !X
k

(Xt^tkn;t^tk+1n (!))2!hX it(!) uniformly on compact sets. (7.3)

From now on, we fix any ! on which the above convergence holds; the argument is com-
pletely pathwise. For fixed t> 0, we define a nonnegative (random) measure �n;t by

�n;t=
X
k=0

n¡1

�tkn (Xt^tkn;t^tk+1n )2=
X
k=0

n¡1

�tkn 1tkn6t (Xt^tkn;t^tk+1n )2:

Here �x denotes a Dirac measure centered at x, namely such that
R
g(s)�x(ds) = g(x) for

all continuous g:R+!R. So �n;t is a linear combination of multiple of Diracs and so a
nonnegative measure.

Notice that by its definition

Zt
n :=

X
k

Htk
n (Xt^tkn;t^tk+1n )2=

Z
0

+1
Hs�

n;t(ds):

If we show that �n;t converge as measures to a limit �t, then Zt
n will converge as well

(because H is continuous and actually bounded on [0; t], which is the interval on which all
these measures are supported).

By Stochastics I (cf. Portmanteu's theorem), in order to verify convergence in the sense
of measures, it suffices to show that their cumulative distribution functions converge:

�n;t([0; s])! �t([0; s]) 8s> 0:
Notice that

�n;t([0; s]) =
X
k=0

1

1tkn6t 1tkn6s (Xt^tkn;t^tk+1n )2=
X
k=0

1

1tkn6s^t(Xs^t^tkn;t^tk+1n )2;

in particular, for fixed s, by considering j s.t. s2 [tjn; tj+1n ), we have�����������n;t([0; s])¡X
k=0

1
(Xs^t^tkn;s^t^tk+1n )2

����������=j(Xtj
n;t^tj+1n )2¡ (Xtj

n;s)2j

6jXtj
n;t^tj+1n j2+ jXtj

n;sj2

62 sup
06u6v6T
ju¡v j6j�nj

jXu;v j2:

Since j�nj!0 and X is continuous, the right hand side goes to 0; combined with (7.3), we
deduce that

lim
n!1

�n;t([0; s]) = lim
n!1

X
k=0

1

(Xs^t^tkn;s^t^tk+1n )2= hX is^t= hX ist 8s> 0
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so that

Zt
n=
Z
0

+1
Hs�

n;t(ds)!
Z
0

+1
HsdhX ist=

Z
0

t

HsdhX is 8t> 0:

This shows pointwise convergence of Zn!
R
0

�
Hs dhX is. With a bit more effort, one can

improve it to uniform convergence on compact sets, but we omit the details here.
All of the above was true on any fixed ! such that (7.3) holds, which overall shows P-

a.s. convergence, uniformly on compact sets, for the extracted subsequence.
We ran argument for the full sequence fZngn, but thanks to Lemmas 5.16 and 5.45,

the same applies to any other subsequence fZnkgk we could start from. By the Fact above,
we conclude that Zn!

R
0

�
HsdhX is in ucp. �

Proof of Theorem 7.2. We use a pathwise argument, which is due to Föllmer.
Let �n be any sequence of locally finite partitions of infinitesimal mesh; to fix ideas, we

can take tk
n := tk/n, but it's not really relevant.

Recall Taylor's formula up to second order: given f 2C2(Rd;R), x;h2Rd, it holds

f(x+h)=f(x)+
X
i=1

d

@if(x)hi+
1
2

X
i;j=1

d

@ijf(x)hihj

+
X
i;j=1

d �Z
0

1

(1¡�)(@ijf(x+�h)¡ @ijf(x))d�
�
hihj:

(Here we gave the explicit integral expression for the remainder, but other expressions
would equally work in the proof below, as long as they allow to prove that the remainder
Rn defined below goes to 0).

By writing f(Xt)¡ f(X0) as a telescopic sum and using Taylor's formula for f up to
second order (with x=Xt^tkn, h=Xt^tkn;t^tk+1n ), we find

f(Xt)¡ f(X0)

=
X
k=0

1

(f(Xt^tk+1n )¡ f(Xt^tkn))

=
X
i=1

d X
k=0

1

@if(Xtk
n)Xt^tkn;t^tk+1n

i + 1
2

X
i;j=1

d X
k=0

1

@ijf(Xtk
n)Xt^tkn;t^tk+1n

i Xt^tkn;t^tk+1n
j

+
X
i;j=1

d X
k=0

1 �Z
0

1

(1¡�)(@ijf(Xtk
n+�Xt^tkn;t^tk+1n )¡ @ijf(Xtk

n))d�
�
Xt^tkn;t^tk+1n
i Xt^tkn;t^tk+1n

j

:=It
1;n+ It

2;n+Rtn

where we used several times the fact that g(Xt^tkn)Xt^tkn;t^tk+1n
i = g(Xtk

n)Xt^tkn;t^tk+1n
i . By

Corollary 6.23 and Lemma 7.3, we know that

I�
1;n!

X
i=1

d Z
0

�
@if(Xs)dXsi; I�

2;n! 1
2

X
i;j=1

d Z
0

�
@ijf(Xs)dhX i; X jis in ucp

therefore in order to conclude it suffices to show that R�n! 0 in ucp as well. Using the
Fact about ucp convergence, arguing as in Lemma 7.3, without loss of generality we can
extract a (not relabelled) subsequence of the partitions f�ngn and assume that P-a.sX

k

Xt^tkn;t^tk+1n
i Xt^tkn;t^tk+1n

j !hX i; X jit uniformly on compact sets.
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The rest of the argument is completely pathwise, i.e. we fix !2
 such that the above holds.
Let [0; T ] be a finite interval and let K �Rd be a convex compact set in which X(!)j[0;T ]
takes its values (for instance the closed ball of radius R= supt2[0;T ] jXt(!)j). Let

'(h) := sup fj@ijf(x)¡ @ijf(x0)j:x; x02K; jx¡x0j6hg for h> 0;

namely ' is the modulus of continuity of D2f restricted to the set K (since K is compact
and f 2C2, D2f jK is uniformly continuous). Then we can bound��������Z

0

1

(1¡�)(@ijf(Xtk
n+�Xt^tkn;t^tk+1n )¡ @ijf(Xtk

n))d�
��������6 '(jXt^tkn;t^tk+1n j);

with the Cauchy-Schwarz inequality, we obtainX
k=0

n¡1

'(jXt^tkn;t^tk+1n j)
����Xt^tkn;t^tk+1n

i Xt^tkn;t^tk+1n
j

����
6'
�
max
k2N

jXt^tkn;t^tk+1n j
� X

k=0

1

(Xt^tkn;t^tk+1n
i )2

!
1/2
 X
k=0

1

(Xt^tkn;t^tk+1n
j )2

!
1/2

¡!0 � hX iit
1/2hX jit

1/2=0;

since '(0)=0, X is uniformly continuous on [0; T ] and the partitions have mesh j�nj!0.
In fact, the above convergence is uniform in t 2 [0; T ]; as the argument holds for any
T 2 (0;+1), we conclude that P-a.s. R�

n! 0 uniformly on compact sets.
As the above argument works for any subsequence we can extract, by the Fact about

ucp convergence we get the conclusion. �

Comment on the proof: the above proof not only shows the Itô formula, but also that
it is well approximated by the corresponding Riemann-Stjeltes approximations uniformly
on compact sets. However if one only wants to prove (7.1), the argument may be simplified
as follows:

� We fix t>0 at the beginning, and prove (7.1) at fixed t. Using the fact that both left
and right hand sides of (7.1) are continuous processes, we can then derive equality
up to indistinguishability by the usual arguments (take any t2Q+ and continuity).

� For fixed t, since we have the freedom to pick any partition we want, we can assume
that t2 �n for all n. Notationwise, it means we do not need to carry around t^ tkn
in the computations.

� Similarly, once we work with fixed t2�n, at the level of Lemma 7.3 we do not need
ucp convergence, but only convergence in probability at fixed t> 0, which slightly
simplifies the argument in the proof therein as well.

---------------------- End of the lecture on January 15 ---------------------

Exercise. Let B be a Brownian motion and n2N. What is the semimartingale decom-
position of Bn?

Exercise. Let X, Y be continuous semimartingales. Recover the integration by parts
formula by applying Itô formula to f(x; y)=xy.
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Remark 7.4. Going through the same proof, one can see that if some coordinates A1; :::;
Ae with e6 d of X = (A; Y ) are continuous and of finite variation, then the regularity
conditions on f can be relaxed to requiring f 2C1;2(Re�Rd¡e). By this notation we mean
that @if are required to exist and be continuous for all i=1; :::; d, but @ijf must exist and
be continuous only when i; j>e+1. In other words, only C1 differentiability is required in
the coordinates i where the process X i=Ai is of finite variation. In this case, the formula
becomes

f(Xt)= f(X0)+
X
i=1

d Z
0

t

@if(Xs)dXsi+
1
2

X
i;j=e+1

d Z
0

t

@ijf(Xs)dhX i;X jis

which is consistent with the fact that hX i;X ji� 0 whenever i6 e or j6 e.

Corollary 7.5. (Itô formula for Brownian motion) Let B be a d-dimensional Brow-
nian motion, f 2C1;2(R+�Rd), f = f(t; x). Then (up to indistinguishability)

f(t; Bt)= f(0; B0)+
X
i=1

d Z
0

t

@if(s;Bs)dBsi+
Z
0

t
�
@tf(s;Bs)+

1
2
�f(s;Bs)

�
ds: (7.4)

The formula may be written a bit formally in differential form as

df(t; Bt)=rf(t; Bt) � dBt+
�
@tf(t; Bt)+

1
2
�f(t;Bt)

�
dt:

Proof. Since t 7! t is of finite variation and f 2C1;2(R+�Rd), by the above remark Itô
formula in this case becomes

f(t;Xt)=f(0; X0)+
Z
0

t

@tf(s;Xs)ds+
X
i=1

d Z
0

t

@if(s;Xs)dXsi

+ 1
2

X
i;j=1

d Z
0

t

@ijf(s;Xs)dhX i;X jis:

Since B is a d-dimensional Brownian motion hBi; Bjit= �ij t (equivalently hBit= Id t);

inserting this fact in the above formula, using that �f =
P

i=1
d @iif and rearranging the

terms yields the conclusion. �

Lemma 7.6. Let X=(X1; :::;Xd) be a d-dimensional continuous semimartingale and let
U �Rd be open and such that, for P-a.e. !,

Xt(!)2U for all t> 0:

Then Itô's formula holds for f 2C2(U ;R).

Sketch of proof.
Proof skipped in the lectures in the interst of time, here is a sketch for completeness.

We consider the stopping times �n= inf ft> 0: d(Xt; U
c)6 1/ng and first prove Itô's

formula for X�n before letting n!1 at the end. To prove the formula for X�n we have
two options:

� Either we redo the proof that we gave above. Here we have to be a bit careful,
because we need some convexity to control the error term in Taylor's formula (in
the proof above we chose a compact convex set K that contains the image of X)
and U is not necessarily convex. But in fact we just need �Xtk

m
�n+ (1¡ �)Xtk+1

m
�n to

be bounded away from the boundary of U , and we can achieve this by making the
step size small enough.
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� Alternatively, we find an approximation fm to f such that fm2C2(Rd;R) and fm
converges to f uniformly on compact subsets of U . For example, one can extend f
by zero to U c and then convolve with a smooth approximation of the identity, or
multiply f by a smooth function which is identically 0 on U c and 1 on

Un :=
�
x2U : d(x; @U)6 1

n

�
:

Then we can apply Itô's formula to fm(X) and pass to the limit on both sides. �

The extension from the above lemma will be very useful in order to apply Itô's formula
to processes such as 1

X
or logX, provided e.g. that X is a strictly positive semimartingale.

Recall the Stratonovich integral from Definition 6.28. Similarly to the case of the
integration by parts formula (6.18), for regular enough f this notion of integral recovers
the classical rules of calculus.

Corollary 7.7. (Chain rule for Stratonovich integral) Let X be a d-dimensional
continuous semimartingale and let f 2C3(Rd;R). Then up to indistinguishability

f(Xt)= f(X0)+
X
i=1

d Z
0

t

@if(Xt) �dXt
i:

Proof. Exercise Sheet 11. �

7.2 First applications of Itô's formula
We say that a complex-valued continuous stochastic process is a (local, semi-) martingale
if both its real and imaginary parts are (local, semi-) martingales. In other words, X =
X1+ �X2 is a C-valued (local, semi-) martingale if and only if (X1; X2) is a R2-valued
(local, semi-) martingale. Here �= ¡1

p
is the imaginary unit.

By �enforcing� bilinearity of h�; �i, we may extend its definition to C-valued continous
semimartingales: if M =M1+ �M2, N =N1+ �N2, we set

hM;N i := hM1;N1i¡ hM2; N2i+ �hM1; N2i+ �hM2; N1i

According to this definition, one can check that h�; �i is still bilinear and symmetric, namely

i. hM;N i= hN;M i;
ii. hzM ;N i= zhM;N i for all z 2C.

Moreover, if M , N are C-valued continuous local martingales, then so is MN ¡M0N0¡
hM;N i.
Exercise. Prove all the above statements. Note that in Point ii. complex products appear:
if zj=xj+ �yj for j=1; 2, then

z1z2=(x1x2¡ y1y2)+ �(x1y2+x2y1):

Moreover, show that if M , N are C-valued local martingales, then so is

MN ¡M0N0¡hM;N i:

When needed, we may always identity C with R2, by mapping z=x+ �y to (x; y). In
this way, f :C!C corresponds to f~:R2!R2; so f =u+ �v where u; v:R2!R.
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Small complex analysis recap: If f :C!C is complex differentiable, then u, v are
smooth functions satisfying the Cauchy-Riemann equations

@1u= @2v; @1v=¡@2u:

In this case, we have f 0(z)= @1u(z)+ �@1v(z), f 00(z)= @11u(z)+ �@11v(z) and

@11u= @12v=¡@22u; @22v= @12u=¡@11v:

Moreover, if f :C!C is complex differentiable (equivalently, f is holomorphic), then it is
actually infinitely differentiable (in fact, u and v must be analytic).
Given the above definitions, one can still show that if X is a C-valued semimartingale and
f :C!C is complex differentiable, then we have the C-valued Itô formula

f(Xt)= f(X0)+
Z
0

t

f 0(Xs)dXs+
1
2

Z
0

t

f 00(Xs)dhX is: (7.5)

In (7.5), the stochastic integral
R
0

�
Hs dXs is defined similarly to hM; N i, by enforcing

bilinearity of the map (H;X) 7!
R
0

�
HsdXs, splitting real and imaginary parts of H and X,

and reducing to (four) real-valued stochastic integrals.

Exercise. Derive formula (7.5) from its R2-valued analogue and the above relations (as
before, note that complex products appear in (7.5)).

We have seen before that for �2R, the process t 7! e�Bt¡�
2t/2 is a martingale. Using

Itô's formula, we obtain the following generalization.
Recall: The complex exponential of z=x+ �y is defined as

ez= ex e�y= ex(cos y+ � sin y):

z 7! ez is complex differentiable and (ez)0= ez.

Proposition 7.8. (Stochastic exponential) Let M 2Mloc
c and �2C. We set

E(�M)t := exp
�
�Mt¡

�2

2
hM it

�
8t> 0:

Then E(�M) is a local martingale and it solves the stochastic differential equation

E(�M)t= e�M0+�
Z
0

t

E(�M)sdMs:

For �=1, we call E(M) the stochastic exponential (or Doléans-Dade exponential) of M.

Proof. Notice that, by relabelling M~ = �M , we may assume without loss of generality
that �=1 and M is a C-valued continuous local martingale.

The process X =M ¡ 1

2
hM i is a C-valued semimartingale, hX i= hM i and applying

the complex Itô formula (7.5) to f(z)= ez we find

eXt=eX0+
Z
0

t

eXsdXs+
1
2

Z
0

t

eXsdhX is

=eM0+
Z
0

t

eXs dMs¡
1
2

Z
0

t

eXs dhX is+
1
2

Z
0

t

eXsdhX is

=eM0+
Z
0

t

eXs dMs

which is exactly the stochastic differential equation above. In particular, eXt is a local
martingale since

R
0

t
eXsdMs is so, being a stochastic integral w.r.t. a cts local martingale. �
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Remark 7.9. The above provides our first example of a solution to a stochastic differential
equation (SDE): given M 2Mloc

c , we say that a continuous, adapted process N solves

dNt=Nt dMt (7.6)

if the same relation holds in integral form, namely (up to indistinguishability)

Nt=N0+
Z
0

t

NsdMs 8t> 0:

By Proposition 7.8, a solution to the SDE (7.6) is given by

Nt= E(M)t= e
Mt¡

1

2
hM it:

In turn, Proposition 7.8 gives a very useful and often easy to check characterization of
the Brownian motion:

Theorem 7.10. (Lévy's characterization of Brownian motion) Let X=(X1; :::;Xd)
be a d-dimensional F-adapted continuous process with X0=0. Then X is a d-dimensional
F-Brownian motion if and only if the following two conditions hold:

i. All components X j are local martingales, and

ii. hX j ; Xkit= �j;k t for all t> 0, equivalently hX it= tId.
In particular, a real-valued continuous local martingale M with M0 = 0 is a Brownian
motion if and only if hM it= t.

Proof. We already know that the conditions are necessary. Let us show that they are
sufficient. Let � 2Rd, then the process ��X :=

P
j=1
d �jX j is a continuous local martingale

with

h��X; ��X it=
X
j ;k=1

d

�j�k hX j ;Xkit=
X
j;k=1

d

�j�k �j;k t= j� j2 t:

By Proposition 7.8 (with �= �), the process

exp
�
���Xt¡

�2j� j2
2

t

�
= exp

�
���Xt+

j� j2
2
t

�
; t> 0;

is therefore a local martingale. But this process is also bounded on every compact interval
(because je�y j=1 for all y 2R), and therefore it is a martingale. Hence, we get

E

�
exp
�
���Xt+

j� j2
2
t

���������Fs�= exp
�
���Xs+

j� j2
2
s

�
8s< t:

But then for every Fs-measurable random variable Y , the characteristic function of (Y ;
Xs;t
1 ; :::;Xs;t

d ) is given by

E[exp(�uY + ���(Xs;t))] = E[exp(�uY )E[exp(���(Xs;t))jFs]]

= E

�
exp(�uY )exp

�
¡j� j

2

2
(t¡ s)

��
= E[exp(�uY )]exp

�
¡j� j

2

2
(t¡ s)

�
= E[exp(�uY )]E[exp(���(Xs;t))];
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which proves that Xs;t is independent of Y and thus of Fs (since Y was an arbitrary Fs-
measurable random variable). Moreover, taking Y = 0 we get that Xs;t�N (0; (t¡ s)I),
where I is the identity matrix in Rd�d. Combining these facts implies that X must be a
(d-dimensional) F-Brownian motion. �

---------------------- End of the lecture on January 16 ---------------------

Exercise. Use Levy's characterization theorem to give another proof of the reflection
principle (Proposition 3.24): if B is a one-dimensional F-BM and � is a F-stopping time,
then Bt� :=Bt1ft6� g+(2B� ¡Bt)1ft>� g is a F-BM (you might want to find H such that
B�
�=
R
0

�
HsdBs).

Remark 7.11. The result is false if M is not assumed to be continuous and allowed to
have jumps. Indeed, recall Example 4.4-iii): we can construct a suitable compound Poisson
process Xt (by taking m=0, �= a=1) such that X and jXtj2¡ t are both martingales.

Technically, we didn't define what is the quadratic variation hM i for local martingales
with jumps, but the above would suggest hX i= t, yielding a counterexample. In fact, in
the presence of jumps, things are more subtle and there exist two distinct definitions of
hM i in the literature, which are both useful for different reasons.

Some more (not examinable) details on the above: Given a càdlàg martingale M ,
whose paths possibly exhibit jumps, one must distinguish between the optional quadratic
variation [M ] and the predictable quadratic variation hM i. Both are increasing processes
such that Mt

2¡M0
2¡A is a martingale; [M ] is the process obtained by looking at the

sum of squares of increments along partitions of infinitesimal mesh, which exhibits jumps
wheneverM does, while hM i is uniquely characterized by the property of being predictable,
in relation to the Doob-Meyer decomposition theorem. Under mild assumptions, one can
show that hM i is continuous.

An example to clarify the above: by Example 4.4 (for m= a=1, Yk� 1), N~t=Nt¡�t
is a martingale; noticing that N is increasing and only moves upwards by istantaneous
jumps of size 1, it's not difficult to show that

lim
n!1

X
k

(N~tkn^t;tk+1n ^t)2= lim
n!1

X
k

(Ntk
n^t;tk+1n ^t)2=Nt

so that [N~]t=Nt. On the other hand, by Example 4.4 we know that (Nt¡ �t)2¡ �t is a
martingale, which in fact amounts to hN~ it= �t. There is no contradiction in this, as it
only implies that [N~]t¡hN it=Nt¡�t=N~t is again a martingale, as well as a process of
bounded variation.

Lévy's theorem admits a natural generalization to the complex-valued case. We say that
a C-valued process B=B1+ �B2 is a complex Brownian motion if (B1; B2) is a R2-valued
Brownian motion; similarly for the definition of a complex F-Brownian motion. In the
following, given X =X1+ �X2, X� denotes its complex conjugate, namely X� =X1¡ �X2.

Corollary 7.12. Let X be a C-valued, F-adapted continuous process with X0=0. Then
X is a complex F-Brownian motion if and only if the following two conditions hold:

i. X is a C-valued local martingale, and

ii. hX;X it=0 and hX;X� it=2t for all t> 0.

Proof. Exercise Sheet 12. �
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Exercise. Arguing as in the proof of Theorem 7.10, show the following: let M 2Mloc
c

with M0=0 be such that M0=0 and such that hM it= f(t), where f :R+!R+ is given a
(deterministic) continuous increasing function with f(0)= 0. Show that M has the same
distribution as Bf(t), where B is a Brownian motion.

By the result of a previous Exercise Sheet, we already know the converse result: M~ t :=
Bf(t) defines a martingale (w.r.t. a suitable filtration) and that hM~ it= f(t).

Thanks to Lévy's characterization theorem, we can prove a far reaching generalization:
every continuous local martingale started at 0 can be transformed into a Brownian motion
through a random time-change. To do this, we will use the following key lemma, which
says that the quadratic variation of a local martingale acts as a �clock� that runs exactly
when the local martingale is moving.

Lemma 7.13. Let M 2Mloc
c . Then M and hM i almost surely have the same intervals of

being constant. That is, for almost all ! 2
, we have that for all 06 s< t:

Mr(!)=Ms(!) for all r 2 [s; t] , hM it(!)= hM is(!):

Proof.
Proof skipped in the lectures and not examinable, included here for completeness.

Define for t> 0 the times

�t := inf fs> t:Ms¡Mt=/ 0g; �t := inf fs> t: hM is¡hM it=/ 0g:

Then �t and �t are stopping times because they are entry times of continuous processes
into open sets and because our filtration is right-continuous. By the density of Q+ in R+

it suffices to show that almost surely �q= �q for all q 2Q+, and as usual this follows if we
can show it for fixed q 2Q+.

So let q 2Q+. Then �q and �q are stopping times with �q; �q> q, and for any stopping
time �> q we get

hM �¡M qi= hM i�+ hM iq¡ 2hM �;M qi= hM i�¡hM iq: (7.7)

With �= �q we get

M �q¡M q� 0 ) 0�hM �q¡M qi= hM i�q¡hM iq;

and therefore �q> �q. For �=�q we read (7.7) from right to left and obtain

0�hM i�q¡hM iq= hM�q¡M qi ) M�q¡M q� 0;

and therefore �q>�q. This concludes the proof. �

Theorem 7.14. (Dambis, Dubins-Schwarz7.1) LetM 2Mloc
c withM0=0 and such that

almost surely hM i1=1. Then, there exists a Brownian motion � such that almost surely

Mt= �hM it; t> 0:

In other words, M is a time-changed Brownian motion.

Remark 7.15.

i. The assumption hM i1=1 is not necessary, but without it we might have to enlarge
the probability space (think of j
j=1, F = f;;
g, M =0). See Theorem V.1.7 of
[23] for a proof.

7.1. This result was proved in 1965 in two papers written independently, one by Dubins and
Schwarz, and another one by Dambis.
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ii. We will see in the proof that the Brownian motion � is in general not adapted to
our original filtration, but rather to a �time-changed filtration�.

Proof. By Lemma 7.13, by changing M and hM i on a null set, we may suppose that
hM i1(!)=1 for all ! 2
 and that M(!) and hM i(!) have the same intervals of being
constant for all ! 2
. Define the finite stopping times

�t := inf fs> 0: hM is>tg for t> 0:

Then for all t> 0 the random variable �t :=M�t is F�t�measurable by Lemma 3.16. In
other words, the process (�t)t>0 is adapted to (Gt)t>0 for Gt :=F�t. We will apply Lévy's
characterization to show that � is a Brownian motion.

First we show that � is continuous with �0=0. We claim that the function

R+3 t 7! �t2R+

is increasing and right-continuous (so in particular càdlàg): indeed, for any s> �t we have
hM is>t, so

�t6 �t+= lim
tn#t

�tn<s:

Since s > �t was arbitrary, we get �t= �t+. Since t 7! �t is càdlàg and M is continuous,
� is also càdlàg. But we can do better: if � is continuous in t, then also � is continuous
in t. If � is discontinuous in t, then there exist s < r with �t¡= s < r= �t, and therefore
hM ir = hM is (the process hM i has a constant stretch). But then also Ms =Mr, and
therefore �t¡=Ms=Mr= �t. So � is continuous. The same argument shows that �0(!)=0
for all !.

Next, we show that � and �t2¡ t, t> 0, are (Gt)t>0-(local) martingales, so that � is a
(Gt)t>0-Brownian motion by Lévy's characterization. Note that for n 2N the processes
M �n and (M �n)2¡hM �ni are uniformly integrable martingales because

hM �ni1= hM i�n=n

is integrable. So by the stopping theorem we get for s< t6n

E[�tjGs] =E[M�t
�njF�s]=M�s

�n= �s

and

E [�t2¡ tjGs]=E [(M �n)�t
2 ¡hM �ni�tjF�s] = (M �n)�s

2 ¡hM �ni�s= �s
2¡ s:

Therefore, � is a Brownian motion.
To conclude the proof it suffices to show that �hM it=Mt for all t>0. If �hM it= t, then

this is obvious. It may happen that �hM it> t because hM i may have constant stretches,
but as above we then use that M and hM i are constant on the same intervals to obtain
the result also in that case. �

Exercise. Let M 2Mloc
c . Show that almost surely the set

ft> 0:M is differentiable in t and M j(t¡";t+") is not constant for any "> 0g

is empty.

Example. Here is a simple application of the Dambis, Dubins-Schwarz theorem: let B
be a Brownian motion and let �2R n f0g. Then �B 2Mloc

c and h�Bit= �2t. Therefore,
there exists a Brownian motion � such that Bt= ��2t. In other words, �B has the same
distribution as (B�2t)t>0 � we have recovered the scaling invariance of Brownian motion!
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Similarly to Lévy's theorem, we have a version of Theorem 7.14 for the complex-valued
case, however under more stringent conditions.

Corollary 7.16. Let M be a C-valued continuous local martingale with M0=0; assume
that almost surely hM;M i=0 and hM;M� i1=1. Then, there exists a C-valued Brownian
motion � such that almost surely

Mt= �hM;M� it
2

8t> 0:

Sketch of proof. Note that, if M =M1+ �M2, then by linearity

hM;M� i= hM1;M1i+ hM2;M2i

is a real-valued increasing process. We can now go through the same proof as above, for
stopping times �~t defined by

�~t := inf fs> 0: hM;M� is> 2tg for t> 0

and go through similar passages as therein (roughly speaking using that �quadratic covari-
ation behaves well under time change�) to find that

h�; � it= hM;M i�~t=0; h�; ��i= hM;M� i�~t=2t

so that � is a C-valued Brownian motion. The rest of the proof proceeds identically. �

Among nice applications of Itô's formula, let us mention its consequence in terms of
recurrence and transience properties of Brownian motion.

Proposition 7.17. (Recurrence/transience of BM in Rd) Let B be a d-dimensional
Brownian motion. Then:

a) For d=1, BM is point-recurrent: it holds

P(for every x, there exists a sequence tn!1 such that Btn=x for every n)=1:

b) For d=2, BM P-a.s. does not pass through any given point: for any x2R2 n f0g,

P(there exists some t> 0 such that Bt=x)=0:

c) For d> 3, BM is transient: P¡ a:s:

lim
t!1

jBtj=+1:

Proof. Part a) immediately follows from the already seen fact that P-a.s.

liminf
t!1

Bt=¡1; limsup
t!1

Bt=+1:

Parts b) and c) are part of Exercise Sheet 12. The proof of b) is based on the conformal
invariance of planar Brownian motion; c) is based on the fact that in d> 3, x 7! jxj2¡d is
harmonic on Rd n f0g (in fact, up to multiplicative constant, it is the Green function). �

Remark 7.18. The proof of part c) provides an important example of an L2-bounded
continuous local martingale which is not a martingale: for d= 3, given x 2R3 n f0g, one
can take Mt :=

1

jx¡Btj
.
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More details about recurrence: Dimension d=2 is somewhat �critical� for Brownian
motion: even though in this case B P-a.s. does not hit a given point, it can be shown that
it is neighbourhood recurrent:

P(for all x2R2 and "> 0; there exists a sequence tn!1 such that Btn2B(x; "))= 1;

see for instance Theorem 7.17 from [16].
It is also interesting to compare Proposition 7.17 to the corresponding results for the d-
dimensional simple random walk (Xn)n2N in Zd (see Examples 1.6.2-1.6.3 from [19]): in
this case X is recurrent for d6 2 and transient for d> 3.

---------------------- End of the lecture on January 22 ---------------------

7.3 Girsanov's theorem
So far, we have mostly considered a fixed reference filtered probability space (
;F ;F;P)
and developed all our calculus tools with respect to it. We might wonder what happens if
we change our reference probability P, by introducing another probability Q: how will the
(semi)martingale property of a process X, and the notion of stochastic integration w.r.t.
X, be modified accordingly?

We can see that something nontrivial can happen already by considering finite dimen-
sional Gaussian measures: let Z �N (0; Id) and let h 2Rd. Then, for any bounded f :
Rd!R, we have

E[f(h+Z)] =(2�)¡d/2
Z
Rd
f(h+x)e¡

jxj2
2 dx

=(2�)¡d/2
Z
Rd
f(y)e¡

jy¡hj2
2 dy

=(2�)¡d/2
Z
Rd
f(y)ey�h¡

jhj2
2 e

¡ jy
2

2 dy

=E

�
f(Z)eZ �h¡

jhj2
2

�
:

So in this particular case, shifting the mean of our Gaussian Z by a factor h is equivalent
(in expectation) to changing the underlying measure by multiplying by another random
variable, namely considering a new probability measure Q via the Radon-Nikodym density

dQ
dP

= eZ �h¡
jhj2
2 ; so that EQ[f(Z)] =EP

�
f(Z)eZ �h¡

jhj2
2

�
:

In general, if Z has a possibly degenerate covariance matrix �, the above might work only
when shifting Z under certain directions.

Exercise. Let Z�N (0;�), where �2Rd�d. Show that, for any h 2 Im(�1/2), namely
such that h=�1/2h~ for some h~2Rd, it holds

E[f(Z +h)]=E

�
f(Z) eZ �(�

¡1h)¡
�����¡1/2h����2

2

�
:

If we think of Brownian motion B as an infinite dimensional version of a Gaussian
variable Z, we might wonder if a similar result still holds in this case. And since we have now
understood that continuous martingales are time-changed versions of Brownian motions,
we can ask what happens in that case as well.

To address these questions, we work in a more abstract setting:
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Definition 7.19. (absolutely continuous, equivalent, mutually singular) Let P
and Q be two probability measures on a measurable space (
;F). We say that:

i. Q is absolutely continuous with respect to P, Q�P, if for all A2F with P(A)=0
we also have Q(A)=0.

ii. Q is equivalent to P, Q�P, if for all A 2 F we have P(A) = 0 if and only if
Q(A)=0; namely, Q�P if Q�P and P�Q.

iii. Q and P are mutually singular if there exists A2F with P(A)= 0 and Q(A)= 1
(note that then P(Ac)= 1 and Q(Ac)=0).

In finite dimensional spaces, there are many equivalent/absolutely continuous proba-
bility measures. For example, any probability measure on B(Rd) that has a density with
respect to Lebesgue measure is absolutely continuous with respect to the distribution of
a Gaussian variable Z �N (0; Id). In particular, all Gaussians N (�; �) with invertible
covariance matrix � are equivalent. But in infinite-dimensional spaces there exists no
Lebesgue measure (!Wikipedia), and �most� probability measures tend to be mutually
singular.

Loosely speaking we will see that, if B is a Brownian motion under P, then for any
other measure Q�P, it holds B=B~ +A where B~ is a Brownian motion under Q and A is
an absolutely continuous process, acting as a shift on B. Such transformations are widely
applied in finance, e.g. in the Black-Scholes model of option pricing, as they allow to work
under a so called risk-neutral measure.

At the same time, this means that the class of probabilities Q�P is quite rigid; for
example, we cannot transform the law of B into that of 2B by an equivalent change of
measure.

Exercise. Let B be a Brownian motion and let �2R n f¡1; 1g. Show that PB and P�B
are mutually singular (both as measures on C(R+;R)).

Hint: Think of the quadratic variation.

As usual, we work on a filtered probability space (
;F ;F;P), F satisfying the usual
assumption. Suppose we are given Q�P (on (
;F)).
Radon-Nikodym theorem: Let �; � be �-finite measures on a measurable space (S;S)
such that �� �, i.e. for all A2S with �(A) = 0 we have �(A) = 0. Then there exists a
measurable, non-negative function f such that

�(A)=
Z
S
1A(x)�(dx)=

Z
S
1A(x)f(x)�(dx) 8A2S:

The function f is �-almost surely unique and we write d�

d�
:= f ; f is often referred to as

the Radon-Nykodym derivative of � with respect to �.

Since Q�P, by the Radon-Nikodym theorem there exists an F�measurable random
variable Z 2L1(P) (the Radon-Nikodym derivative) with Z > 0 and EP[Z] = 1, such that

Q(A)=EP[1AZ] 8A2F :
We write

dQ
dP

:=Z:

If G �F is a sub �-algebra, then clearly we also have QjG�PjG, so there exists a G�mea-
surable Radon-Nikodym derivative dQjG

dPjG
. We write

dQ
dP

��������
G
:= dQjG

dPjG
:
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Given the filtration F, we then set

Zt :=
dQ
dP

��������
Ft

8t2 [0;1]:

Lemma 7.20. Z=(Zt)t>0 is a uniformly integrable P-martingale and Zt=E[Z1jFt].

Proof. Z is adapted and integrable by construction. For any t> 0 and A2Ft, by con-
struction we have

EP[1AZ1] =Q(A)=QjFt(A)=EPjFt[1AZt] =EP[1AZt]

which proves that Zt=E[Z1jFt]; uniform integrability follows since Z12L1. �

Since F satisfies the usual conditions, Z has a càdlàg modification; from now on, we
work with this modification.

Lemma 7.21. Let Q�P and let Z be the càdlàg modification of dQ

dP

������
Ft
, t> 0.

i. If � is a stopping time, then P-a.s.

Z� =
dQ
dP

��������
F�
:

ii. We have

Q
�
inf
t>0

Zt> 0
�
=1: (7.8)

Proof.

i. By the stopping theorem, since Z is a uniformly integrable càdlàg martingale, for
any A2F� we have

Q(A)=EP[1AZ1]=EP[1AZ�]:

ii. Let � "= infft>0:Zt<"g; since Z is càdlàg and F is right-cts, it is a stopping time.
By right continuity, it holds Z�"6 ", and so by Point i. we find

Q(� "<1)=EP[1f�"<1gZ�"]6 ";

where we used the fact that that f� "<1g2F�". But then

Q
�
inf
t>0

Zt> 0
�
= lim
"!0

Q
�
inf
t>0

Zt> "
�
= lim
"!0

Q(� "=+1)> lim
"!0

(1¡ ")= 1

yielding the conclusion. �

Under the assumption that Q�P, from (7.8) we also deduce that for P-a.e. !

inf
t>0

Zt(!)> 0

Proposition 7.22. (Bayes' formula) Let Q�P and let Zt=
dQ

dP

������
Ft
, t> 0. Then for

any Ft�measurable random variable X, it holds X 2 L1(Q) if and only if XZt 2 L1(P).
Moreover in this case Q-a.s. (equivalently P-a.s.) we have

EQ[X jFs] =
EP[XZtjFs]

Zs
: (7.9)
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Proof. Given X as above, since Z is non-negative, we have

EP[jXZtj] =EP[jX jZt]=EQ[jX j]

so that one term is finite if and only if the other is, proving the first claim.
Assume now X 2L1(Q); then the right hand side of (7.9) is well-defined, since XZt2

L1(P) and there is no problem to divide by Zs, since we just showed that Zs>0 a.s. Next,
we show that EP[XZtjFs]

Zs
2L1(Q); since this is a Fs�measurable random variable, we have

EQ

���������EP[XZtjFs]
Zs

�������� �6EP

�
EP[jXZtjjFs]

Zs
Zs

�
=EP[jXZtj]<1:

It remains to verify the defining property of the conditional expectation. For any A2Fs,
we get:

EQ[1AX] =EP[1AXZt]=EP[1AEP[XZtjFs]]

=EP

�
1AEP[XZtjFs]

Zs
Zs

�
=EQ

�
1A

EP[XZtjFs]
Zs

�
which proves the claim. �

Exercise. What can we say if we only know that Q�P but not necessarily Q�P? In
this case, how should we interpret the identity

EQ[X jFs]=
EP[XZtjFs]

Zs
?

We want to understand what happens with (local) martingales if we change the prob-
ability measure. We can achieve this with the help of Bayes' formula and Itô's formula.
We start with the following auxiliary result:

Corollary 7.23. Let Q� P and let Zt =
dQ

dP

������
Ft
, t> 0 (càdlàg modification). For any

adapted càdlàg M we have:

M is a Q�martingale () MZ is a P�martingale
M is a Q�local martingale () MZ is a P�local martingale:

Proof. We first show the �non-local� version. By Proposition 7.22, M is Q-integrable if
and only if MZ is P-integrable; by assumption, M and MZ are adapted. For any s < t,
Bayes' formula yields:

Ms=EQ[MtjFs]=
EP[MtZtjFs]

Zs
() MsZs=EP[MtZtjFs];

where the identities hold a.s. (under both P and Q, which have the same null sets).
For the claim about the local martingale property, let (�n) be a localizing sequence

(under one and then under both measures). We just saw that

M �n is a Q�martingale () M �nZ is a P�martingale:

We would like to see M �nZ�n on the right hand side, so we need to show that M �nZ is a
P�martingale if and only if M �nZ�n is a P-martingale. SinceMt

�n is F�n^t�measurable, we
get

EP[jMt
�nZtj] =EQ[jMt

�nj]=EP[jMt
�nZt^�nj] =EP[jMt

�nZt
�nj];
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so M �nZ is integrable if and only if M �nZ�n is integrable. To conclude, it suffices to check
that

Mt
�nZt¡Mt

�nZt
�n=M�nZ�n^t;t is a martingale: (7.10)

From (7.10) we can then deduce that

M �n is a Q�mart. , M �nZ is a P�mart. , M �nZ�n is a P�mart.

which concludes the proof.
Verification of (7.10) is elementary but tedious, skipped in the lectures but

given here for completeness:
Let s6 t, then

E[M�nZ�n^t;tjFs]=E[M�nZ�n^t;t1�n6sjFs]+E[M�nZ�n^t;t1�n>sjFs]:

For the first term, noticing that M�n1�n6s is Fs-measurable, by the stopping theorem for
Z we find

E[M�nZ�n^t;t 1�n6sjFs]=M�nZ�n^s;s1�n6s=M�nZ�n^s;s:

To conclude, it then suffices to show that for any A2Fs it holds

E[M�nZ�n^t;t 1�n>s1A] = 0:

Notice that 1�n>s1A2F�n, therefore by conditional expectation and stopping theorem we
have

E[M�nZ�n^t;t 1�n>s1A] =E[M�n1�n>s1AE[Zt¡Zt^�njF�n]]= 0:

Combining everything, this shows (7.10). �

Exercise. What do we get if we only know that Q�P?

---------------------- End of the lecture on January 23 ---------------------

To apply the previous result, we need to understand the density process Z better. For
that purpose, we need the following result.

Proposition 7.24. (Stochastic logarithm) Let Z be a continuous P�local martingale
such that P�almost surely Zt>0 for all t>0. Then there exists a unique continuous P�local
martingale L=L(Z), called the stochastic logarithm of Z, such that

Zt= E(L)t= exp
�
Lt¡

1
2
hLit

�
; t> 0:

If moreover Z02L1(P), then Z is a supermartingale; in this case, given T 2 (0;+1], Z is
a martingale on [0; T ] if and only if E[ZT ]=E[Z0].

Proof. See Exercise Sheet 13 (for Z0=1, the general case is analogous). �

We are now ready to state and prove Girsanov's theorem, which tells us exactly how
continuous local martingales are affected by an equivalent change of the underlying prob-
ability measure.
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Theorem 7.25. (Girsanov) Let Q�P and assume that the density process Zt=
dQ

dP

������
Ft
,

t> 0, is continuous. Let L be the stochastic logarithm of Z. If M is a continuous P�local
martingale, then

M~ =M ¡hM;Li

is a continuous Q�local martingale. Here hM;Li and hM;Z i are the quadratic covariation
processes under P.

Remark 7.26. In hindsight, we then deduce thatM=M~ +hM;Li is still aQ-semimartin-
gale, and therefore we can also define hM;Z i and hM;Li under Q and we have

hM;Z i= hM~ ; Z i; hM;Li= hM~ ; Li:

Thanks to the approximation result in Lemma 5.45, and the fact that Q�P, the quadratic
covariations underQ and under P are the same, since they can be obtained as the ucp limit
(with respect to both P and Q) of sums of squared increments obtained by deterministic
partitions of infinitesimal mesh.

Proof of Theorem 7.25. We know from Corollary 7.23 that M~ is a Q�local martingale
if and only if M~Z is aP�local martingale. Recall from Remark 7.9 that (w.r.t. P) Z satisfies

dZ=ZdL:

Integration by parts (manipulated in differential form for simplicity) then yields

d(M~Z)t=M~ tdZt+ZtdM~ t+dhM~ ; Z it
=M~ tdZt+ZtdMt¡Zt dhM;Lit+dhM;Z it
=M~ tdZt+ZtdMt¡Zt dhM;Lit+ZtdhM;Lit
=M~ tdZt+ZtdMt:

Since Z and M are both P�local martingales, the right hand side defines a P�local mar-
tingale. �

Remark 7.27. The same statement and proof also work on finite time horizons: for fixed
T 2 (0;+1), if QjFT�PjFT and M is a P-local martingale on [0; T ], then

M~ t=Mt¡hM;Lit t2 [0; T ];

is a Q�local martingale on [0; T ]; by this we mean that the stopped processes (M~ t
�n)t2[0;T ]

are martingales, where stopping after T has no effect.

More generally, Girsanov's theorem tells us that continuous P-semimartingales are still
continuous Q-semimartingales, under an equivalent change of measure Q�P.

Corollary 7.28. In the setting of Girsanov's theorem, any continuous P�semimartingale
X =X0+M +A is also a continuous Q�semimartingale, with decomposition under Q
given by

X =X0+(M ¡hM;Li)+ (A+ hM;Li) :=X0+M~ +A~:

Theorem 7.29. Let B be a d-dimensional P-Brownian motion and let H be a d-dimen-
sional progressively measurable process such that P-almost surelyZ

0

T

jHsj2ds=
X
i=1

d Z
0

T

jHs
ij2 ds<1 8T > 0;

Main theorems of stochastic analysis 117



so that in particular H i2Lloc2 (Bi) for i=1; :::; d. Assume that the process

Zt= exp
�Z

0

t

Hs �dBs¡
1
2

Z
0

t

jHsj2ds
�
= exp

 X
i=1

d Z
0

t

Hs
idBsi¡

1
2

Z
0

t

jHsj2ds

!
; t> 0;

is a uniformly integrable martingale such that Z1>0 P-a.s. Define the probability measure
dQ=Z1dP. Then under Q the process

B~ =B ¡
Z
0

�
Hsds

is a d-dimensional Brownian motion.

Proof. Since Z1> 0 we have P�Q and thus Q�P: indeed, for any A2F such that
Q(A)=0, we must have

EP[1AZ1] =Q(A)=0;

which is only possible if P(A) = 0. Therefore, we can apply Girsanov's theorem: noting
that Z= E(L) for Lt=

R
0

t
Hs�dBs, and

hL;Biit=Zt=
X
j=1

d �Z
0

�
Hs
jdBs

j ; Bi

�
t

=
Z
0

t

Hs
i ds;

we deduce that B~ =B ¡
R
0

�
Hsds is a d-dimensional Q-local martingale. Moreover, since

the process
R
0

�
Hsds is of finite variation, by Lemmas 5.16-5.45 we can find a deterministic

sequence of partitions of infinitesimal mesh such that P-a.s.

lim
n!1

X
k=0

n¡1

B~t^tkn;t^tk+1n
i B~tkn;tk+1n

j = �ij t uniformly on compact sets;

since Q�P, the same convergence holds Q-a.s. and therefore

Q(hB~ i; B~ jit= �ij t)= 1:

By Lévy's characterization it then follows that B~ is a d-dimensional Brownian motion
under Q. �

Exercise. Let d=1. Find an example of an H that works for the previous theorem.

As an consequence of Theorem 7.29, we get the following result. One may loosely think
of it as a generalization of our initial example about translations of d-dimensional standard
Gaussians Z by h2Rd, upon enforcing the correspondence B$Z, H$h,

R
0

�
HsdBs$h �Z

and
R
0

� jHsj2ds$jhj2.

Corollary 7.30. (Cameron-Martin formula) Let B be a d-dimensional Brownian
motion and let h 2 L2(R+;R

d). Let �: C(R+;R
d)!R be a measurable function and

assume that � is either bounded or nonnegative. Then

E

�
�
�
B+

Z
0

�
hsds

��
=E

�
�(B)exp

�Z
0

1
hs �dBs¡

1
2

Z
0

1
jhsj2 ds

��
:

Proof. This follows from the previous theorem, provided we can show that

Zt= exp
�Z

0

t

hs �dBs¡
1
2

Z
0

t

jhsj2ds
�
; t> 0;
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is a uniformly integrable martingale with Z1> 0. But
R
s

t
hr �dBr is independent of Fs

and it has the distribution N (0;
R
s

t jhr j2dr) because the integrand is deterministic (using
that limits of Gaussian random variables are Gaussian, and that we can approximate the
integral

R
s

t
hr dBr by step functions; alternatively, recall that for determinstic integrands,R

0

t
hs �dBs coincides with theWiener integral we constructed at the beginning of the course).

Therefore,

E[ZtjFs] =ZsE
�
exp
�Z

s

t

hr �dBr¡
1
2

Z
s

t

jhr j2dr
���������Fs�=Zs;

and thus Z is a martingale. Moreover we can explicitly compute higher moments since we
know that

R
0

t
hs �dBs�N (0;

R
s

t jhrj2dr):

E[Zt2] = E

�
exp
�
2
Z
0

t

hs �dBs¡
Z
0

t

jhsj2ds
��

= exp
�
22

2

Z
0

t

jhsj2ds¡
Z
0

t

jhsj2ds
�

6 exp
�Z

0

1
jhsj2ds

�
:

This shows uniform integrability of Z. Finally, Z1 is an exponential and therefore strictly
positive. �

Example 7.31. (Brownian motion with drift) Let B be a 1-dimensional Brownian
motion, � 2R with �=/ 0, and consider B~t=Bt+ �t=Bt+

R
0

t
�ds. Here we cannot apply

directly the previous result, as �2/ L2(R+). However, since � 2L2([0; T ]) for any finite T ,
we can apply Girsanov's theorem on [0; T ] (equivalently, we may apply it to BT , or replace
� by hs= � 1[0;T ](s)) to deduce that (B~t)t2[0;T ] and (Bt)t2[0;T ] are equivalent probability
measures on C([0; T ];R), and for any bounded �:C([0; T ];R)!R it holds

E[�(B~)]=E

�
�(B)exp

�
�BT ¡

�2

2
T

��
:

The restriction to finite T here is necessary, as the laws of (B~t)t2R+ and (Bt)t2R+ are
singular with respect to each other: for instance if � > 0, as a consequence of the law of
iterated logarithm we know that P-a.s.

liminf
t!1

B~t= lim
t!1

B~ =+1; liminf
t!1

Bt=¡1:

Indeed, one can see that the Girsanov density ZT = exp
�
�BT ¡ �2

2
T
�
! 0 as T!1.

---------------------- End of the lecture on January 29 ---------------------

As the previous results and examples have shown, often in applications (especially when
dealing with Brownian motion), we want to �reverse engineer� Girsanov's theorem, in the
following sense:

1. As a starting point, we know what is the drift counterterm ¡hM;Li we would like
to see appearing as an effect of the change of measure.

2. From this we reconstruct the candidate L and therefore ultimately the candidate
density process Z= E(L).
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3. Ultimately, to verify that everything works as planned, we need to know that the
assumptions of Theorem 7.25 are satisfied. Namely, we must check that Z is a
genuine martingale and that Q defined via dQ

dP
=Z1 is equivalent to P.

In the setting of Corollary 7.30, we were able to do so since the integrand h was determin-
istic, and so everything was very explicit. But for general local martingales L, Step 3. can
be quite hard, as the exponential martingale is only guaranteed to be a local martingale
(and a supermartingale, cf. Proposition 7.24). Think of L=

R
0

�
Hs �dBs, for some non-trivial

random integrand H; already taking H =B poses a significant challenge.
The following condition is often very useful:

Theorem 7.32. (Novikov's criterion) Let L2Mloc
c with L0=0. If

E

h
e
1

2
hLi1

i
<1;

then Z = E(L) = exp(L¡ 1

2
hLi) is a uniformly integrable martingale; moreover the proba-

bility measure Q defined by dQ

dP
=Z1 is equivalent to P.

Proof. See Le Gall [16], Theorem 5.23. �
Exercise. Find now an interesting example of a random integrand H that works for
Girsanov's theorem for Brownian motion.

Exercise. In the setting of Theorem 7.32, since P�Q, it follows that there must exist
another exponential martingale Z�, of the form Z� = E(L�) for a unique Q-local martingale
L�, such that dP

dQ
=Z�1. Find the expressions for Z� and L�.

8 Stochastic differential equations
The references for this section include most of the previous ones, since most monographs
on stochastic analysis also treat stochastic differential equations.

8.1 First examples
In order to properly motivate the usefulness of stochastic differential equations (SDEs)
as a more refined, random version of their deterministic counterpart given by ordinary
differential equations (ODEs), we start by providing some examples. They will also justify
the need for an abstract solution theory, which applies in situations where deriving an
explicit solution formula might be no longer possible.

Example 8.1. (Malthusian growth model) The Malthusian growth model (introduced
by Malthus in 1798) is the simplest continuous-time model describing the evolution of a
population size. Assume that each individual of the population on average gives birth to
a new individual with rate b > 0, and dies with rate d. Setting r= b¡ d2R, this leads to
the ODE

d
dt
Xt= rXt; X0=x0> 0; (8.1)

whereXt is the number of individuals at time t and x>0 is a given initial condition, namely
the population size at the initial time t=0. The unique solution to (8.1) is given by

Xt=x0 ert: (8.2)

So we see exponential growth for r > 0 and exponential decay for r < 0. For very large
populations, this might be a reasonable approximation; but for populations of �finite size�,
we will see random fluctuations, because the rate r only holds on average and not every
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individual behaves the same. If those fluctuations are independent in time and of finite
variance, then by the central limit theorem/Donsker's invariance principle, we expect them
to be Gaussian, so time-dependent multiples of Brownian increments. For simplicity, let us
assume the fluctuations to be stationary in time, after all we already chose r independent
of time. This gives rise to the stochastic differential equation (SDE)

dXt= rXt dt+�dBt; X0=x0; (8.3)

where � is the �size of random fluctuations�. Eq. (8.3) should be read in integrated form:

Xt=x0+
Z
0

t

rXsds+�Bt:

There is however a problem with this equation: even though X models the population size
(so it should be a nonnegative number), since the Brownian motion B can become very
negative, it can �push X below 0� with positive probability. Therefore, our new equation
is maybe not so suitable for modeling a population size. Also, it is not so natural to
assume that the fluctuations are independent of the state: If there are 1010 individuals, the
oscillations should be stronger than if there are 100 individuals. It is therefore more natural
to also have the fluctuations depend linearly on Xt, namely to consider instead the SDE

dXt= rXt dt+�XtdBt; X0=x0;

or in integrated form

Xt=x0+
Z
0

t

rXsds+
Z
0

t

�XsdBs: (8.4)

For r=0, we have already seen in Proposition 7.8 that a solution to (8.4) is given by

Xt=x0 E(�B)t=x0 exp
�
�Bt¡

1
2
�2t

�
: (8.5)

What if r=/ 0? By extrapolating the formulas (8.2)-(8.5), corresponding to the two special
cases �=0 and r=0, we can guess that the general formula solution formula for (8.4) is
given by

Xt=x0 exp
�
rt+�Bt¡

1
2
�2t

�
=x0 exp

�
�Bt+

�
r¡ �2

2

�
t

�
: (8.6)

Indeed, by applying Itô's formula, one can see that X given by (8.6) solves (8.4).
Is X the only solution? To verify that this is indeed the case, first notice that since X

is an exponential, it is strictly positive, therefore by Itô's formula Zt :=Xt
¡1 solves

dZt=¡
1
Xt
2
dXt+

1
Xt
3
dhX it

=¡ r
Xt
dt¡ �

Xt
dBt+

�2

Xt
dt

=¡(r¡�2)Zt dt¡�Zt dBt

where in the computation we used the SDE (8.4) satisfied by X itself. In particular, we see
that Z also solves an SDE. Now assume let us assume that Y is another solution to (8.4)
starting at Y0=X0; then the integration by parts formula gives

d(YZ)=¡YZ(r¡�2)dt¡�YZdBt+ rYZdt+�YZdBt¡�2YZdhBit=0
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so that

YtZt=Y0Z0=1 =) Yt=Zt
¡1=Xt 8t> 0:

So uniqueness of solutions holds holds. Moreover, we know that E(�B) is a martingale,
and therefore

E[Xt]=x0E[E(�B)tert] =x0 ert;

in expectation, the solution Xt to our stochastic model (8.4) behaves like the deterministic
model xt to the deterministic model (8.1) with �=0.

Let us look at some simulations. We first simulate the deterministic model with a simple
Euler scheme, for x0=1 and r=1:

Python 3.7.4 (default, Aug 13 2019, 15:17:50)
[Clang 4.0.1 (tags/RELEASE_401/final)]
Python plugin for TeXmacs.
Please see the documentation in Help -> Plugins -> Python

>>> import numpy as np
import matplotlib.pyplot as plt

T, h = 5, 1e-3
n=int(T/h)

X_0, r = 1, 1
time = np.arange(0,T+h,h)
X = np.zeros(n+1)
X[0] = X_0

for i in range(n):
X[i+1] = X[i] + r*X[i]*h

plt.clf()
plt.plot(time[1::50],X[1::50])

pdf_out(plt.gcf())
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We observe exponential growth. Now let us add noise, so take �=/ 0. To make the behavior
more transparent, we don't only simulate one trajectory, but 50 trajectories with the same
initial conditions and the same parameters, but different realizations of the noise. We take
�= 0.2.
>>> T, h = 5, 1e-3

n = int(T/h)
k = 50

X_0, r, sigma = 1, 1, 0.2
time = np.arange(0,T+h,h)
dB = np.sqrt(h)*(np.random.randn(k,n))
X = np.zeros((k,n+1))
X[:,0] = X_0

plt.clf()

for i in range(n):
X[:,i+1]=X[:,i] + r*X[:,i]*h + sigma*X[:,i]*dB[:,i]

for i in range(k):
plt.plot(time[1::15],X[i,1::15])

pdf_out(plt.gcf())
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So we see trajectories that qualitatively look like the trajectories of the deterministic model,
but they are �dispersed� and the precise behavior depends on the realization of the noise.
Now let us crank up the noise and consider �=1:
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>>> T, h = 5, 1e-3
n = int(T/h)
k = 50

X_0, r, sigma = 1, 1, 1
time = np.arange(0,T+h,h)
dB = np.sqrt(h)*(np.random.randn(k,n))
X = np.zeros((k,n+1))
X[:,0] = X_0

plt.clf()

for i in range(n):
X[:,i+1]=X[:,i] + r*X[:,i]*h + sigma*X[:,i]*dB[:,i]

for i in range(k):
plt.plot(time[1::15],X[i,1::15])

pdf_out(plt.gcf())
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The system looks much more oscillatory and erratic now, especially if we take into account
that the y-axis scaled and now we see much larger values. Remarkably, now there is no
clear growth any more, but the population oscillates up and down. Let us take an even
bigger �, say �=3:
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>>> T, h = 5, 1e-3
n = int(T/h)
k = 50

X_0, r, sigma = 1, 1, 3
time = np.arange(0,T+h,h)
dB = np.sqrt(h)*(np.random.randn(k,n))
X = np.zeros((k,n+1))
X[:,0] = X_0

plt.clf()

for i in range(n):
X[:,i+1]=X[:,i] + r*X[:,i]*h + sigma*X[:,i]*dB[:,i]

for i in range(k):
plt.plot(time[1::15],X[i,1::15])

pdf_out(plt.gcf())
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>>>
Now the system seems to have a tendency to collapse and to quickly converge to 0. This
corresponds to the population eventually becoming extinct, and actually doing so faster
as � gets larger. So in this model more randomness seems to be disadvantageous for the
population growth.

Exercise. The long time behavior of the stochastic model may be very different from
that of the deterministic model. We say that the model is stable if for initial conditions x
�close to 0� (in this simple example it is not necessary to specifiy what we mean by that)
we have limt!1Xt=0 almost surely. Show that in the deterministic case �=0 the system
is stable if and only if r < 0, while in the stochastic case � > 0 the system is stable if and
only if r < 1

2
�2. There is a stabilization by noise effect.

Example 8.2. (Logistic growth model) The previous discussion strongly depends
on the linearity of the equation. However, the principle that our population can grow
indefinitely is rather irrealistic and eventually this growth shoudl become unsustainable,
for instance because the environmental resources (e.g. food) are limited. We could make
the model more realistic by considering a decreasing function f :R+!R+ and changing
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the birth rate to bf(Xt), which leads to the equation

dXt=(bf(Xt)¡ d)Xt dt+�XtdBt; X0=x:

In this way, for small X, the population grows, but as X the function f has a penalizing
effect, to the point where bf(x)¡ d becomes negative for x too large; the population
then shrink over time, until it reached the regime where bf(x)¡ d> 0, and so on. The
simplest choice of f is given by f~(x)=1¡ x

M
, whereM represents a given �maximum size�

of individuals that the environment can support. In this case, the resulting ODE/SDE
(depending on whether �=0 or � > 0) is called the logistic growth model .

>>> import numpy as np
import matplotlib.pyplot as plt

T, h = 20, 1e-3
n = int(T/h)
k = 30

X_0, r, sigma, M = 1, 1, 0.2, 100
time = np.arange(0,T+h,h)
dB = np.sqrt(h)*(np.random.randn(k,n))
X = np.zeros((k,n+1))
X[:,0] = X_0

plt.clf()
for i in range(n):

X[:,i+1]=X[:,i] + r*(1-X[:,i]/M)*X[:,i]*h + sigma*X[:,i]*dB[:,i]

for i in range(k):
plt.plot(time[1::50],X[i,1::50])

pdf_out(plt.gcf())
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>>>

In the numerical simulation of dXt= r
�
1¡ Xt

M

�
Xt dt+�Xt dBt for small �, the popu-

lation size oscillates around the �saturation size� M .
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Example 8.3. So far we focused on one-dimensional models, where X is a number.
But in general our model can consist of several �components�, which we can represent as
vector X = (X1; :::; Xd). This is for instance the case if we want to differentiate between
different types of individuals (or species) among our population. Therefore, in general we
are interested in solving multidimensional SDEs.

Here are some examples which are relevant for applications:

i. Stochastic Lotka�Volterra equation: We model a biological system in which two
species interact, one as prey and one as predator (say rabbits and foxes). Let X1

be the number of prey and X2 the number of predators. Then we postulate the
stochastic differential equation

dXt
1 = (a¡ bXt

2)Xt
1dt+�1Xt

1dBt1;
dXt

2 = (¡c+ gXt
1)Xt

2dt+�2Xt
2dBt2:

Here, a; b; c; g; �1; �2 are positive constants, and B=(B1; B2) is a two-dimensional
Brownian motion.

ii. Stochastic FitzHugh�Nagumo equation: We model the state of a neuron, where we
keep track of the membrane voltage X1 and a �delay variable� X2. We postulate
the stochastic differential equation

dXt
1 = (Xt

1¡ (Xt
1)3+Xt

2+ Iext)dt+dBt;
dXt

2 = (Xt
1+1¡Xt

2)dt;

where Iext2R is the �external stimulus� and B is a Brownian motion.

iii. Stochastic SIR model: We model the spread of a disease across a population by
distinguishing between:

a) healthy individuals who might contract the disease in the future (S for sus-
ceptible),

b) sick individuals (I for infected),

c) individuals who do not fall into the previous categories, because they either
developed immunity or died after contracting the disease (R for recovered or
removed).

The resulting systemXt=(St;It;Rt) is devised in such a way that the overall amount
of individuals Nt=St+ It+Rt stays constant over time:

dSt = ¡�St It dt¡�St It dBt;
dIt = (�St It¡ 
It) dt+�St It dBt;
dRt = 
It dt:

The (stochastic) SIR model is one of the simplest mathematical epidemiology
models, and it has also been used as a predictive tool during the Corona pandemic.

Both the general logistic growth model (with nonlinear, possibly complicated f) and the
above examples provide nonlinear, complicated systems where we have little hope solving
the equation explicitly, like we did in (8.6). Ultimately, the reason why we succeded in
the case of (8.4) is because this was a linear SDE , and indeed in general linear SDEs can
be solved (more or less) explicitly. The same is true for some particular nonlinear SDEs,
thanks to some clever tricks, but not in general.

Therefore, we need abstract results guaranteeing that solutions exist and are unique,
so that the SDE is well-posed .
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This is a non-trivial question, already if we consider just the (autonomous) 1-dimen-
sional case and we only focus on ODEs

d
dt
Xt= b(Xt); X jt=0=x0 (8.7)

which can be thought of as a special case of SDEs, in which we have a noise term �Bt
appearing but with �=0. As the next example shows, there can be at least three different
pathological scenarios we may encounter:

1. Solutions do not exist (failure of existence).

2. Solutions exist, but they are not unique (failure of uniqueness).

3. Solutions exist only on a finite time interval [0; T �) and they blow-up as t! T �

(solutions exist locally but finite-time blow-up happens, a more refined scenario
amounting to failure of global existence).

For ODEs, these case are illustrated by the following classical counterexamples:

Example 8.4. Consider the ODE (8.7) with b:R!R.

i. Let b(x) = 1f0g(x) and x0= 0. Then existence fails: indeed, assume that X is a
solution. Then X must be increasing (b>0) and there are two possible cases: either
Xt>0 for all t>0, or there exists ">0 with Xt�0 for all t2 [0; "]. In the first case
we get the contradiction

0<Xt=0+
Z
0

t

1f0g(Xs)ds=0+
Z
0

t

0ds=0:

In the second case we get the contradiction

0=X"=0+
Z
0

"

1f0g(Xs)ds=0+
Z
0

"

1ds= ":

So the assumption must have been wrong and there cannot exist a solution.

ii. Let b(x) = sign(x) jxj
p

and x0= 0. Then uniqueness fails, because the following
functions are all solutions:

Xt=
�
4
(t¡ t0)21[t0;1)(t); �2f¡1; 1g; t02 [0;1]:

So for this example existence holds, but uniqueness fails.
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iii. Let b(x)=x2 and x0=1. Then b is locally Lipschitz continuous and thus we know
from the analysis lecture that there is at most one solution (uniqueness holds).
However, this unique solution is explicitly given by

Xt=
1

1¡ t ; t2 [0; 1);

and it diverges to +1 at time 1 (in other words, finite-time blow-up happens). So
the solution blows up in finite time and does not exist for all times.
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Exercise.

i. Consider the ODE with b(x)=x2 and initial condition x0. Can you find a range of
x0 for which there is no blow-up?

ii. Let �2 (0;1) and b(x)= sign(x)jxj� and x0=0. Find the (infinitely many) solutions
to dXt= b(Xt)dt with initial condition x0=0.

---------------------- End of the lecture on January 30 ---------------------

8.2 Solution concepts

In the following, we will develop a general existence and uniqueness theory for nonlinear
SDEs, under appropriate conditions on the coefficients.

Compared to ODE theory, the situation is more subtle, as there are multiple solution
concepts available. The reason for this will become clear as we go on developing the theory
and seeing interesting examples where it applies.

For simplicity, whenever discussing SDEs, we will let the coefficients b and � to be Borel
measurable functions

b:R+�Rd!Rd; b(t; x)= (bi(t; x))i2f1;:::;dg;
�:R+�Rd!Rd�m; �(t; x)= (�ij(t; x))i2f1;:::;dg; j2f1;:::;mg
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which are assumed to be locally bounded , namely such that

sup
t2[0;T ];jxj6R

jb(t; x)j+ sup
t2[0;T ];jxj6R

j�(t; x)j<1 for all T ;R2 (0;+1)

We call b the drift coefficient and � the diffusion coefficient of the d-dimensional stochastic
differential equation (SDE):

dXt= b(t;Xt)d t+�(t;Xt)dBt (8.8)

where B is aRm-valued Brownian motion (so that, since �(t;Xt)2Rd�m, at least formally,
�(t;Xt)dBt2Rd). Sometimes it is more convenient to think of �j(t; x)= (�ij(t; x))i=1d to
be a velocity field (namely, �j:R+�Rd!Rd) �attached� to the one-dimensional Brownian
motion Bj, for each j 2f1; :::;mg. As a consequence, (8.8) may also be written as

dXt= b(t;Xt)d t+
X
j=1

m

�j(t;Xt)dBt
j: (8.9)

In either case, the SDE must be understood in integral form and componentwise, see (8.10)
below.

Definition 8.5. Let b and � be measurable locally bounded functions as above. A tuple
(
;F ;F;P; �; B;X) is a weak solution to the SDE ( 8.8) if the following hold:

i. (
;F ;F;P) is a filtered probability space satisfying the usual conditions;

ii. B is a d-dimensional F-Brownian motion, � be an F0�measurable Rd�valued random
variable and X =(Xt)t>0 is a d-dimensional continuous F-adapted process;

iii. P-almost surely, for all t� 0 and i2f1; :::; dg it holds that

Xt
i= �+

Z
0

t

bi(s;Xs)ds+
X
j=1

m Z
0

t

�ij(s;Xs)dBs
j: (8.10)

Remark 8.6. Note the the integrals appearing in (8.10) are well-defined. Indeed, since X
is continuous and adapted, it is progressive, and therefore so are t 7! b(t;Xt), t 7!�(t;Xt);
since X is continuous and b, � are locally bounded, then b(t; Xt), �(t; Xt) are locally
bounded processes (in the sense of Remark 6.18). Therefore

R
0

t
bi(s;Xs)ds is meaningful as

a Lebesgue integral and
R
0

t
�ij(s;Xs)dBs

j as a stochastic integral.

Extra comment about the literature, not examinable: The assumption that b and �
are locally bounded is sometimes too restrictive, as in relevant application the coefficients
might explode around some critical point, e.g. like 1

jxj or
1

t
p . In these cases, one can still

define what it means to be a solution to the SDE (8.8), up to additionally enforcing that

P

�Z
0

T

[jb(s;Xs)j+ j�(s;Xs)j2] ds<1 8T <1
�
=1

in order to guarantee that all integrals appearing make sense, as either Lebesgue integrals
or stochastic integrals.

Remark 8.7. It follows from (8.10) that P-a.s. X0= �. � is called the initial condition of
the SDE. Notice that, since B is F-Brownian, by Blumenthal's 0-1 law it is independent
of �; therefore prescribing the law of � is the same as prescribing the joint law of (�;B).
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In the framework of Definition 8.5, for simplicity one sometimes drops the underlying
(
;F ;F;P; B) and simply says that X is a weak solution of the SDE (8.8) started at �.
B can be referred to as the driving noise, or driver , and X is a solution driven by B.

Notice however that in Definition 8.5, the underlying probability space (
;F ;F;P) and
the Brownian motion B are part of the solution itself. This is because, once we are given
a filtered probability space and a Brownian motion on it, we have a very rich structure
allowing to generate many other Brownian motions (think of time-reversal, reflection prin-
ciple, Lévy's characterization, time-change) as well as to change the reference probability
P (think of Girsanov). So it is not fully clear that there is a �canonical choice� of (
;F ;F;
P;B) and Definition 8.5 gives us the additional freedom to choose the most convenient one.

At the same time, whenever for instance trying to numerically simulate solutions as
we did in the Malthusian growth case, it is clear that we would like to first simulate a
Brownian motion B, and then construct the solution X (or its numerical approximation)
starting from it. In other words, we would like to specify an order: we first fix the reference
setting (
;F ;F;P;B), and then find a solution on it. This is accomplished by the following
solution concept.

Definition 8.8. We say that X is a strong solution if it is a weak solution which is adapted
to the (standard augmentation of the) filtration generated by B and �.

Remark 8.9. If (
;F ;F;P; B; �; X) is a weak solution and we let G be the (standard
augmentation of the) filtration generated by X, B and �, then it's easy to check that B is
a G-Brownian motion, � is G0-adapted and so (
;F ;G;P;B; �;X) is still a weak solution.

The idea encoded in the definition of strong solution is instead that (up to technical
measure theory details, coming from the completion of the measure) X can be expressed
as X =F (�;B), where F :Rd�C(R+;Rd)!C(R+;Rd) is a measurable function.

This was indeed the case in the SDE (8.4) where we got an explicit solution for-
mula (8.6) corresponding to

F (�; B)t= � exp
�
rt+�Bt¡

1
2
�2t

�
8t> 0:

Having defined what it means to be a solution to the SDE, we want a uniqueness
concept as well. Notice that uniqueness should be a property of the equation (8.8), not of
the solution (8.10).

Definition 8.10. We say that pathwise uniqueness holds for the SDE ( 8.8) if for any
tuple (
;F ;F;P; B; �) as in Definition 8.5, and any two solutions X and Y solving the
SDE wiwht respect to this tuple, it holds

P(Xt=Yt for all t> 0)=1:

The concept of �pathwise uniqueness� should be naturally paired with that of �strong
solution�. We will see later that there is another notion of uniqueness (�uniqueness in law�)
which is more naturally paired with the larger class of weak solutions.

8.3 Existence and uniqueness under global Lipschitz conditions
In analysis lectures it is typically shown that ODEs with Lipschitz continuous coefficients
have unique solutions (the result has several names, typically either Cauchy�Lipschitz or
Picard�Lindelo�f theorem). Here we extend this result to the stochastic setting.
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Convention. In the following, we will consider norms of the matrix � 2Rd�m. Since
Rd�m is finite dimensional, any two norms are equivalent, and we may just think of � as
a �huge vector� with dm entries. It will be convenient to work with the Frobenius norm,
so we always take

j� j :=

0@X
i=1

d X
j=1

m

�ij
2

1A1/2=(trace(���))1/2:

Exercise. Show that, for any � 2Rd�m and any v 2Rm, j�v j6 j� j jv j.

Theorem 8.11. (Strong wellposedness for globally Lipschitz coefficients) Assume
that there exists a constant K> 0 such that b and � satisfy the following:

jb(t; x)¡ b(t; y)j+ j�(t; x)¡�(t; y)j6K jx¡ y j 8t> 0; x; y 2Rd; (8.11)

jb(t; x)j+ j�(t; x)j6K(1+ jxj) 8t> 0; x2Rd: (8.12)

Then pathwise uniqueness holds for the SDE ( 8.8). Moreover, for any F0�measurable
initial condition �, there exists a strong solution X.

Remark 8.12. Condition (8.11) means that b and � are globally Lipschitz in x with con-
stantK, uniformly in t>0. Condition (8.12) means that b and � have at most linear growth
in x (indeed as jxj!1, jxj � 1+ jxj) uniformly in t> 0. Notice that in practice (8.11)
almost implies (8.12), since by triangular inequality

jb(t; x)j6 jb(t; 0)j+ jb(t; x)¡ b(t; 0)j6K~(1+ jxj)

for K~ :=max fjb(t; 0)j; Kg, similarly for �.

Exercise. We will often need to exchange sums and powers. Show that, up to a constant,
this is allowed: If x1; :::; xn> 0 and p> 1, then

(x1+ ���+xn)p6np¡1(x1p+ ���+xnp):

We will split the proof in several steps. We start by recalling a fundamental tool from
ODE theory.

Lemma 8.13. (Gro�nwall's lemma) Let T 2 (0;+1] and let f : [0; T ]!R be a bounded
and measurable function. Assume that for some �; �> 0 we have

f(t)6�+ �

Z
0

t

f(s) ds 8t2 [0; T ]:

Then

f(t)6�e�t 8t2 [0; T ]:

Proof.
Proof was skipped in the lectures for the sake of time; the result is standard and I hope
you have already seen it before in analysis courses. In case you haven't, here is included
for completeness a proof (among the numerous existing ones).
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Iterating the assumption we get

f(t)6�+ �

Z
0

t
�
�+�

Z
0

s1

f(s2)ds2

�
ds1

6�+�(�t)+ �2
Z
0

tZ
0

s1
�
�+ �

Z
0

s2

f(s3)ds3

�
ds2ds1

=�+�(�t)+�(�t)
2

2
+ �3

Z
0

tZ
0

s1
Z
0

s2

f(s3)ds3ds2ds1

6���6�+�(�t)+�(�t)
2

2
+ ���+�(�t)

n¡1

(n¡ 1)! + �n
Z
0

tZ
0

s1
:::

Z
0

sn¡1
f(sn)dsn���ds1:

The first n terms on the right hand side are the beginning of the power series �e�t, so if
the integral term vanishes for n!1, then the proof is complete. But if C>0 is such that
jf(t)j6C for all t2 [0; T ], then���������nZ

0

tZ
0

s1
:::

Z
0

sn¡1
f(sn)dsn���ds1

��������6 �nZ
0

tZ
0

s1
:::

Z
0

sn¡1
Cdsn���ds1=C

�n tn

n!
;

which indeed converges to zero as n!1. �

Proposition 8.14. (Pathwise uniqueness for locally monotone coefficients) Assume
that the coefficients b and � are locally bounded and satisfy the following local monotonicity
assumption: for every T 2 (0;+1) and n2N there exists a constant KT ;n> 0 such that

2[b(t; x)¡ b(t; y)] � (x¡ y)+ j�(t; x)¡�(t; y)j26KT ;njx¡ y j2 (8.13)

for all t2 [0; T ] and jxj; jy j6n. Then pathwise uniqueness holds for the SDE ( 8.8).

Exercise. Check that if b and � satisfy the global Lipschitz condition (8.11), then (8.13)
holds. More generally, a sufficient condition guaranteeing the validity of (8.13) is to require
that b and � are locally Lipschitz continuous, uniformly on finite times, namely to require
that for every T 2 (0;+1) and n2N there exists a constant K~T ;n> 0 such that

jb(t; x)¡ b(t; y)j+ j�(t; x)¡�(t; y)j6K~T ;njx¡ y j (8.14)

for all t2 [0; T ] and jxj; jy j6n.

--------------------- End of the lecture on February 5th ----------------------

Proof. Let X and Y be two solutions, defined on the same probability space, driven by
the same B and with same initial datum �. For any n2N, define the stopping time

�n= inf ft> 0: jXtj _ jYtj>ng:

Then E[jXt
�n¡Yt

�nj2]64n2<1 for all t>0. Our goal is to control jXt
�n¡Yt

�nj2 using Itô's
formula. To this end, setting Zt: =Xt

�n¡Yt
�n, notice that

Zt
i=
Z
0

t

[bi(s;Xs)¡ bi(s; Ys)] 1[0;�n](s) ds+
X
k=1

m Z
0

t

[�ik(Xs)¡�ik(Ys)] 1[0;�n](s) dBsk

so that

hZ i; Z iit=
X
k=1

m Z
0

t

j�ik(Xs)¡�ik(Ys)j21[0;�n](s) ds:
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Applying Itô's formula to jZtj2 (notice that f(x)= jxj2 is such that rf(x)=2x, D2f(x)=
2Id) we then find

djXt
�n¡Yt

�nj2=djZtj2=2
X
i=1

d

Zt
i �dZti+

X
i=1

d

dhZ i; Z iit

=2
X
i=1

d

[bi(s;Xs)¡ bi(s; Ys)](Xsi¡Ysi)1[0;�n](s)ds

+2
X
i=1

d X
k=1

m

[bi(s;Xs)¡ bi(s; Ys)][�ik(s;Xs)¡�ik(s; Ys)] 1[0;�n](s) dBsk

+
X
i=1

d X
k=1

m Z
0

t

j�ik(s;Xs)¡�ik(s; Ys)j2 1[0;�n](s) ds:

=(2[b(s;Xs)¡ b(s; Ys)] � (Xs¡Ys)+ j�(s;Xs)¡�(s; Ys)j2)1[0;�n](s)ds

+2
X
i=1

d X
k=1

m

[bi(s;Xs)¡ bi(s; Ys)][�ik(s;Xs)¡�ik(s; Ys)] 1[0;�n](s) dBsk:

In the above computation, we used several times the fact that we can write indifferently
Xs or Xs

�n as long as we are multiplying by 1[0;�n](s). Since b and � are locally bounded
coefficients and jXsj1[0;�n]6n, similarly for Y , the stochastic integrals appearing at the end
of the computation are genuine martingale (the integrands are bounded by deterministic
constants). Therefore taking expectation (in integral form) we find

E[jXt
�n¡Yt

�nj2]=E
�Z

0

t

2([b(s;Xs)¡ b(s;Ys)] � (Xs¡Ys)+ j�(s;Xs)¡�(s;Ys)j2)1[0;�n](s)ds
�

6E
�Z

0

t

KT ;n jXs¡Ysj2 1[0;�n](s)ds
�

6KT ;n

Z
0

t

E[jXs
�n¡Ys

�nj2] ds

where in the second passage we applied assumption (8.13) and in the last one Fubini's
theorem. As the argument holds for any t2 [0; T ], applying Gro�nwall's lemma (for f(t)=
E[jXt

�n¡Yt
�nj2], �=0, �=KT ;n) we conclude that

E[jXt
�n¡Yt

�nj2] = 0 8t> 0; n2N:

Since X�n and Y �n are continuous, they must be indistinguishable. Now we let n!1 to
conclude that X and Y are indistinguishable as well. �

Next, we want to construct a strong solution by a fixed point procedure. To this end,
recall (a version of) Banach's fixed point theorem:

Banach's fixed point theorem: Let (E; k�kE) be a Banach space and let I:E!E be
a contraction, namely a function such that

kI(x)¡I(y)kE6 � kx¡ ykE 8x; y 2E

for some �2 (0;1). Then I admits a unique fixed point x�2E, namely there exists a unique
solution x�2E to the equation I(x�)=x�.
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In order to apply Banach's theorem, we want to rephrase the SDE problem (8.8) as an
appropriate fixed point equation. Suppose we are already given a filtered space (
;F ;F;P)
on which (B; �) are defined, and let G denote the (augmented) filtration generated by �;
B. For a parameter �> 0 to be chosen later, let us consider the space of processes

E�= fH =(Ht)t>0 continuous;G-adapted, Rd-valued such that kHkE�<1g
where

kH kE� := sup
t>0

e¡�tE
�

sup
s2[0;t]

jHsj2
�1
2:

Exercise. Show that, for any �> 0, E� is a Banach space.

In the proof of the next result, Minkowski's integral inequality will be useful.
Minkowski's integral inequality (special case): Let Z = Z(t; !) be a measurable
nonnegative process; then for any p2 [1;1] and any t2 [0;+1] it holds that







Z

0

t

Zsds









Lp(
)

6
Z
0

t

kZskLp(
) ds: (8.15)

With these preparations, we can now show strong existence of solutions.

Proposition 8.15. Let b, � satisfy the assumptions of Theorem 8.11. Then for any F0-
measurable � 2L2(
), there exists a strong solution X to the SDE (8.8).

Proof. Given a continuous, G-adapted Rd-valued process H, let us define another G-
adapted, continuous Rd-valued process I(H) by

I(H)= �+
Z
0

�
b(s;Hs)ds+

Z
0

�
�(s;Hs)dBs:

Our goal is to show that, for appropriately chosen �, I as defined above maps E� into itself
and is in fact a contraction. Once we have done this, by Banach's fixed point theorem, we
will be able to conclude that there exists a process X 2E� such that X =I(X), which is
then by definition a strong solution to the SDE (recall that G is the (augmented) filtration
generated by � and B).

We omit the verification that I maps E� into itself, as it is almost identical to the
computations that we will present below to show its contractivity, up to roughly using
assumption (8.12) in the passages where we will invoke (8.11) instead. Let H1, H22E�,
then

I(H1)r¡I(H2)r=
Z
0

r

[b(s;Hs
1)¡ b(s;Hs

2)]ds+
Z
0

r

[�(s;Hs
1)¡�(s;Hs

2)]dBs

so that

sup
r2[0;t]

jI(H1)r¡I(H2)rj6
Z
0

t

jb(s;Hs1)¡ b(s;Hs
2)jds+ sup

r2[0;t]

��������Z
0

r

[�(s;Hs
1)¡�(s;Hs

2)]dBs

��������:
Taking the L2(
)-norm on both sides, using first standard Minkowki's inequality and then
its integral-in-time version (8.15) (for p=2) we find







 sup

r2[0;t]
jI(H1)r¡I(H2)r j










L2(
)

6
Z
0

t

kb(s;Hs
1)¡ b(s;Hs

2)kL2(
) ds

+











 sup
r2[0;t]

��������Z
0

r

[�(s;Hs
1)¡�(s;Hs2)]dBs

��������











L2(
)

:=It1+ It2:
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On the first term, we may apply assumption (8.11) and the definition of kH1¡H2kE� to
find

It
16K

Z
0

t

kHs
1¡Hs

2kL2(
) ds6KkH1¡H2kE�
Z
0

t

e�sds= K
�
e�tkH1¡H2kE�:

On the second term, we can use Doob's martingale inequality, and then compute the
quadratic variation of the stochastic integral (writing everything componentwise, similarly
to Proposition 8.14) to find

It
26CE

���������Z
0

t

[�(s;Hs1)¡�(s;Hs
2)]dBs

��������2�1/2
=CE

�Z
0

t

j�(s;Hs
1)¡�(s;Hs

2)j2ds
�
1/2

6CK
�Z

0

t

E[jHs
1¡Hs

2j2]ds
�
1/2

6CK kH1¡H2kE�
�Z

0

t

e2�sds
�
1/2

= CK

2�
p e�t kH1¡H2kE�

where again we used assumption (8.11) and the definition of kH1¡H2kE�. Overall we get







 sup
r2[0;t]

jI(H1)r¡I(H2)rj









L2(
)

6
�
K
�
+ CK

2�
p

�
e�t kH1¡H2kE�;

multiplying both sides by e¡�t and taking supremum over t> 0 we obtain

kI(H1)¡I(H2)kE�6
�
K
�
+ CK

2�
p

�
kH1¡H2kE�:

Therefore choosing �> 0 large enough so that

K
�
+ CK

2�
p < 1

we can conclude that I is a contraction on E�. �

We can finally complete the

Proof of Theorem 8.11. Pathwise uniqueness follows from Proposition 8.14 (as the
global Lipschitz condition (8.11) implies the validity of (8.13)); Proposition 8.15 implies
strong existence for � 2L2(
), so it only remains to relax this last assumption to allow for
any F0-measurable, possibly non-integrable �.

Given such �, thanks to Proposition 8.15, for all n2N there is a pathwise unique strong
solution Xn to

dXt
n= b(t;Xt

n)d t+�(t;Xt
n)dBt; X0

n= �1j� j6n: (8.16)

We claim that the sequence fXngn is a Cauchy sequence in the ucp convergence; if that
is the case, then there must exist a continuous process X such that Xn!X in ucp, and
thanks to the Lipschitz continuity of b and � and stability of stochastic integrals under ucp
convergence (Corollary 6.22) we can conclude thatX solves the SDE withX0= �. Moreover
X is G-adapted, since it is the limit of G-adapted processes, thus a strong solution.

Let Xn solve (8.16), then since � is G0-measurable we can multiply both sides by 1j� j6n
and bring it inside the integrals to find

d(Xt
n1j� j6n)= b(t;Xt

n1j� j6n)1j� j6nd t+�(t;Xt
n1j� j6n)1j� j6ndBt; X0

n1j� j6n=1j� j6n;
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Here we used two facts: a) if j� j>n, changing the values inside b and � doesn't change
anything, since they get multiplied by 0 anyway; b) since � is G0-measurable, so is 1j� j6n,
and so we can move it inside and outside stochastic integrals as we please (see the Exer-
cise below). We can do the same operation for Xm with m > n, in which case since
1j� j6n1j� j6m=1j� j6n we find

d(Xt
m1j� j6n)= b(t;Xt

m1j� j6n)1j� j6nd t+�(t;Xt
m1j� j6n)1j� j6ndBt; X0

m1j� j6n=1j�j6n:

Roughly speaking, Xt
n1j� j6n and Xt

m1j� j6n solve the same SDE; indeed going through
the same identical argument as in the proof of Proposition 8.14, one can show that they
are indistinguishable. As a consequence it must hold

P(Xn=/ Xm)6P(j� j>n)! 0 as n!1

proving the desided claim and thus concluding the proof. �

Exercise. Let s< t fixed, (
;F ;F;P) given. Let M 2Mloc
c , H 2Lloc2 (M) and Z be a Fs-

measurable random variable. Then (P-a.s.)Z
s

t

ZHr dMr=Z
Z
s

t

Hr dMr

--------------------- End of the lecture on February 6th ----------------------

Example 8.16. (Ornstein-Uhlenbeck process) Let d=m=1, a; � >0 and �2R and
consider the SDE

dXt= a(�¡Xt)dt+�dBt; X0=x: (8.17)

Clearly the assumptions of Theorem 8.11 are satisfied, so there is a pathwise unique strong
solution. If Xt<�, then the drift is positive and X has a tendency to increase. If Xt>�,
then the drift is negative and X has a tendency to decrease. Such behavior is called
mean-reverting (the mean being �), and the Ornstein-Uhlenbeck process models a random
process that fluctuates around its mean �.

Let us derive the solution to (8.17) explicitly by the variation of constants method:
the homogeneous part of the equation is given by

dYt=¡aYtdt
which is solved by Yt= ce¡at for c2R. We take c=1 look for a solution X which �looks
like Y up to a multiplicative perturbation�; namely we make the solution ansatz

Xt=YtZt= e¡atZt:

By the integration by parts formula, Z then satisfies

dZt=d(eatXt)= aeatXtdt+ eatdXt

=eat(aXt dt+ a(�¡Xt)dt+�dBt)
=�aeatdt+�eatdBt:

Integrating in time (noting that aeat=(eat)0) we find

eatXt=Zt=Z0+ �(eat¡ 1)+
Z
0

t

�easdBs

which finally yields (X0=Z0=x)

Xt= e¡atx+ �(1¡ e¡at)+
Z
0

t

e¡a(t¡s)�dBs: (8.18)

Stochastic differential equations 137



Given the explicit formula (8.18) one can then verify that X is indeed a solution to (8.17),
thus the unique one. The expected value of Xt is

E[Xt] =xe¡at+ �(1¡ e¡at);

which converges to � as t!1 (recall that a>0). Note also that Xt is a Gaussian random
variable (since the integrand in the stochastic integral is deterministic), and its variance is
given by

var(Xt)=E

��Z
0

t

e¡a(t¡s)�dBs

�
2
�
=
Z
0

t

e¡2a(t¡s)�2ds= �2

2a
(1¡ e¡2at);

which converges to �2/2a. So as t!1, the law of Xt converges to N
�
�;

�2

2a

�
(in fact,

if we had more time to discuss these topic, one could show that N
�
�;

�2

2a

�
is the unique

invariant measure of the SDE (8.17)).

Exercise. What happens for a< 0 as t!1?

Due to lack of time, the next Examples 8.17-8.18 were omitted in the lectures and are not
examinable. I leave them here for those interested.

Example 8.17. (ODE in Brownian time) If �=0, i.e. we are considering an ODE, then
the same arguments used in Theorem 8.11 show that for globally Lipschitz f 2C(Rd;Rd)
and x02Rd we can find a unique solution x2C1(R;Rd) to the equation

d
dt
x(t)= f(x(t)) 8t2R; x(0)=x0:

(The difference is that now we are solving the equation both forward and backward in time,
i.e. we allow negative t). Let us write '(t) :=x(t), so that '2C(R;Rd). If f 2C1(Rd;Rd),
then

d2

dt2
'(t)= d

dt
f('(t))=rf('(t)) d

dt
'(t)=rf('(t)) f('(t)) (8.19)

where (rf(x)f(x))i=
P

j=1
d @jfi(x) fj(x) for i=1; :::;d); therefore '2C2(R;Rd). Iterating,

it's easy to check that if f 2C2(Rd;Rd), then '2C3(R;Rd). Consider now the stochastic
process Xt := '(Bt) for a one-dimensional Brownian motion B, i.e. we are considering a
�Brownian random time change� (notice however that t 7!Bt is by no means injective). By
the Stratonovich chain rule (Corollary 7.7), X solves

dXt=
d'
dt
(Bt) �dBt= f('(Bt)) �dBt= b(Xt) �dBt (8.20)

which is a Stratonovich SDE . By instead applying Itô formula, using the formula for d2

dt2
',

coming from (8.19), we get the equivalent Itô form of SDE (8.20):

dXt= f(Xt)dBt+
1
2
(rf f)(Xt)dt: (8.21)

The SDE (8.21) could have been obtained directly from (8.20), using the rules to convert
Stratonovich integrals into Itô integrals (Definition 6.28) and recursively applying the
structure of the SDE (8.20) itself.

The conditions f 2C2(Rd;R) and global Lipschitz continuity of f are actually sufficient
to guarantee the pathwise uniqueness of X, because in this case the drift 1

2
rff in the

Itô form (8.21) is locally Lipschitz continuous and so Proposition 8.14 applies. Therefore,
Xt= '(Bt) is the only solution to our SDE (8.21), as well as to (8.20).
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With some more tricks of this type ( Doss-Sussmann transformation), given any
1-dimensional Brownian motion B, we can write solutions to SDEs of the form

dXt= b(Xt)dt+�(Xt) �dBt
more or less explicitly in terms of solutions to suitable ODEs. At this point it might seem
as if SDEs are a boring extension of ODEs. But in our arguments it was absolutely crucial
that the noise is 1-dimensional (m=1; for m> 1 we could not interpret B as a �random
time change�).

For multidimensional Brownian motion, this works only under very particular condi-
tions on b and �; typically, one must require the ODE flows induced by different vector
fields �j (the ones coming from writing the SDE as (8.9) to commute, thus enforce Lie
Bracket conditions of the form [�j ; �k] = 0 for all j ; k 2f1; :::;mg.

Example 8.18. (Brownian motion on the unit circle) Let us consider a concrete
example of an ODE in Brownian time: We take ':R!R2 as a rotation on the unit circle,

'0(t)=
�
0 ¡1
1 0

�
'(t); '(0)=

�
1
0

�
:

The explicit solution is '(t) =
�

cos(t)
sin(t)

�
. So if B is a one-dimensional Brownian motion,

then we call the following process Brownian motion on the unit circle:

Xt= '(Bt)=
�

cos(Bt)
sin(Bt)

�
2R2; t> 0:

Note that jXtj=1 for all t> 0 (otherwise, �Brownian motion on the unit circle� would be
a very bad name). By the considerations above, we have with f(x)=

�
¡x2
x1

�
:

dXt=
�
0 ¡1
1 0

�
Xt �dBt

=
�
0 ¡1
1 0

�
Xt dBt+

1
2
(rff)(Xt)dt

=
�
0 ¡1
1 0

�
Xt dBt¡

1
2
Xt dt;

so X solves a linear SDE (both in Itô and Stratonovich form). The assumptions of The-
orem 8.11 are satisfied for this equation, so X is the unique solution.

We can also formulate this differently: We let the Brownian motion B run on R, but
we consider its value modulo 2�. Then we identify [0; 2�) with the unit circle S1 via
'(�) := ei�=

�
cos(�)
sin(�)

�
, where we identified C with R2.

Exercise. Find an explicit solution to the SDE dXt=2 Xt

p
�dBt, X0=1, up to a suitable

stopping time � . Note that the square root function is smooth and Lipschitz continuous on
[";1) for any ">0. Derive the equivalent Itô formulation of the SDE (up to the stopping
time), using the definition of Stratonovich integral and the fact itself that X is a solution.
Does the formula for the explicit solution X you found extend to times t> �?

8.4 Weak solutions and uniqueness in law
Recall the definition of weak solution to the SDE

Xt= �+
Z
0

t

b(s;Xs)ds+
Z
0

t

�(s;Xs)dBs
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from Definition 8.5. In practice, one is often interested in computing statistics of the
solutionX, rather than its exact values depending on the Brownian path B. This motivates
the following definition.

Definition 8.19. We say that weak uniqueness holds for the SDE (8.8) if any two given
weak solutions (
i;F i;Fi;Pi; �i; Bi; X i) such that LawP1(�1) =LawP2(�2) have the same
finite-dimensional distributions. We may indifferently refer to this as uniqueness in law
for the SDE, or we say that the solution X is unique in law.

Remark 8.20. In other words, X is unique in law if its law as a Rd-valued stochastic
process (Xt)t>0 is uniquely determined. Since X is a continuous process, this also uniquely
determines its law e.g. as a random variable in C([0; T ];Rd) for any finite T . In other
words, if weak uniqueness holds for the SDE, and we are given two solutions as above, then

EP1[�(X1)]=EP2[�(X2)]

for any bounded, measurable function �:C([0; T ];Rd)!R.

Weak solutions are indeed a strictly larger class than strong solutions, and we may
achieve uniqueness in law in situations where pathwise uniqueness fails, as the next example
shows.

Example 8.21. (Tanaka equation) Consider the SDE

dXt= sign(Xt)dBt; X0=0;

where by convention sign(x)=
�
1; if x> 0;
¡1; if x< 0

. Then:

i. Uniqueness in law holds: If X is a weak solution, then it is a local martingale started
at 0 and with quadratic variation hX it=

R
0

tsign(Xs)2ds= t, i.e. it is a Brownian
motion.

ii. There exists a weak solution: Let X be a Brownian motion and define

Bt=
Z
0

t

sign(Xs)dXs:

Then B is a Brownian motion in the filtration (FX)+;P, and

Xt=
Z
0

t

jsign(Xs)j2dXs=
Z
0

t

sign(Xs)dBs:

iii. Pathwise uniqueness fails: If X solves the SDE, also ¡X solves the same SDE
with initial condition X0=0. Indeed, one can check that P-a.s.

R
0

+1
1fXs=0gds=0

(Exercise: compute its expectation and use that X is a Brownian motion), so that

d(¡X)t=¡sign(Xt)dBt=¡1fXt=/ 0g sign(Xt)dBt
=1fXt=/ 0g sign(¡Xt)dBt
=sign(¡Xt)dBt:

iv. Strong existence fails. A self-contained proof by contradiction of this fact would
require more advanced tools like Itô Tanaka formula and the local time L of X,
therefore we omit it. Let us only point out that, in view of points i.-iii. above, strong
existence cannot hold by virtue of the upcoming Theorem 8.24.

Intuitively, strong uniqueness fails whenever the filtration generated byX is larger than
the one generated by B. This roughly speaking means that X carries �more randomness�
than B, and knowledge of B alone is not enough to reconstruct the solution X.
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As Tanaka's equation suggests, an important motivation for studying weak solutions is
that they may exist and/or be unique in law under more permissive conditions than those
needed for strong existence/pathwise uniqueness.

Girsanov's theorem can play a key role in order to construct weak solutions and/or
prove their uniqueness, as the next result shows.

Proposition 8.22. Let b:R+�Rd!Rd be a uniformly bounded drift, namely such that

jb(t; x)j6K 8t> 0; x2Rd (8.22)

for some deterministic constant K>0. Then for any x02Rd, there exists a weak solution
to the SDE

dXt= b(t;Xt)dt+dBt

starting at x0, which is unique in law. Moreover for any T 2 (0;+1) and any bounded
measurable function F :C([0; T ];Rd)!R we have

E[F (X)] =E

�
F (x0+B) exp

�Z
0

T

b(s; x0+Bs) � dBs¡
1
2

Z
0

T

jb(s; x0+Bs)j2 ds
��
: (8.23)

Proof. We divide the proof in two steps: we first construct a weak solution, and then later
verify uniqueness in law. For simplicity, especially for existence, we work on a fixed finite
interval [0; T ]; up to technical details, one can actually allow R+ instead.

Step 1: weak existence. Consider the process Xt := x0+Wt, where we assume to be
working on a probability space carrying a Brownian motion W . Then we may write

Xt=x0+
Z
0

t

b(s;Xs)ds+
�
Wt¡

Z
0

t

b(s;Xs)ds
�

:=x0+
Z
0

t

b(s;Xs)ds+Bt:

We define a new probability measure Q by

dQ
dP

= exp
�Z

0

T

b(s;Xs) � dWs¡
1
2

Z
0

T

jb(s;Xs)j2ds
�
;

where the right hand side has expectation 1 because Novikov's condition (Theorem 7.32)
is satisfied, since by assumption

E

�
exp
�
1
2

Z
0

T

jb(s;Xs)j2 ds
��
6 exp

�
TK2

2

�
<1:

Under Q, B is a Brownian motion on [0; T ] and therefore (
;F ;F;Q; B; X) is a weak
solution the SDE on [0; T ]. Moreover we have

EQ[F (X)] =EP

�
F (X) E

�Z
0

�
b(s;Xs) �dWs

�
T

�
=EP

�
F (x0+W ) exp

�Z
0

T

b(s; x0+Ws) � dWs¡
1
2

Z
0

T

jb(s; x0+Ws)j2 ds
��

=EQ

�
F (x0+B) exp

�Z
0

T

b(s; x0+Bs) � dBs¡
1
2

Z
0

T

jb(s; x0+Bs)j2 ds
��

proving (8.23) in this case.
Step 2: uniqueness in law. Let now (
;F ;F;P; X; B) be a weak solution; fix a finite

time horizon [0;T ]. We may again apply Novikov to define a new probability measureQ~ via

dQ~
dP

= exp
�
¡
Z
0

T

b(s;Xs) �dBs¡
1
2

Z
0

T

jb(s;Xs)j2 ds
�
:
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Then under Q~ , since X is a solution to the SDE, we have

Xt=x0+
�
Bt+

Z
0

t

b(s;Xs)ds
�
=x0+Wt

where W is a F�Brownian motion on [0; T ] under Q~ and Wt=Xt¡ x0. By plugging the

above relations into the definition of the density dQ~

dP
, we can compute its inverse:

dP
dQ~

=

 
dQ~
dP

!¡1
= exp

�Z
0

T

b(s;Xs) �dBs+
1
2

Z
0

T

jb(s;Xs)j2 ds
�

=exp
�Z

0

T

b(s;Xs) � d
�
W�¡

Z
0

�
b(r;Xr)dr

�
+ 1
2

Z
0

T

jb(s;Xs)j2ds
�

=exp
�Z

0

T

b(s;Xs) � dWs¡
1
2

Z
0

T

jb(s;Xs)j2 ds
�

=exp
�Z

0

T

b(s; x0+Ws) �dWs¡
1
2

Z
0

T

jb(s; x0+Ws)j2ds
�
:

Therefore

EP[F (X)] =EQ~

"
F (x0+W ) dP

dQ~

#
recovering formula (8.23). As the argument holds for any T <1 and any bounded mea-
surable F :C([0; T ];Rd)!R, formula (8.23) implies that the finite-dimensional marginals
of X are uniquenely determined. �

Exercise. Let b:R!R be bounded and measurable. Going through a similar argument,
show that weak uniqueness holds for the SDE

dXt= b(Xt)dt+ sign(Xt)dBt; X0=x02Rd:

Remark 8.23. (More about Girsanov, not examinable) Proposition 8.22 admits
many extensions and variations. In general, Girsanov allows to �transform SDEs into other
SDEs� by adding/subtracting a drift term, and consequently allows to �transfer� uniqueness
in law results from one SDE to the other.

For instance, the condition (8.22) of boundedness of b can be relaxed to allow linear
growth, and the argument from Step 2 about uniqueness in law part holds much more
generally (but then Step 1 might fail, and one must find a different way to construct a
weak solution, without using Girsanov).

Moreover, even though it largely simplified the analysis, we don't need noise to be
additive in the argument, i.e. we don't need to take �= Id. For instance, it suffices to know
that �:R+�Rd!Rd�d is locally Lipschitz and uniformly bounded and nondegenerate, in
the sense that �(t; x) is an invertible d� d matrix and

j�(t; x)j+ j�(t; x)¡1j6K 8(t; x)2R>0�Rd:

More generally, by writing b=��¡1b, so thatZ
0

�
b(s;Xs)ds+

Z
0

�
�(s;Xs)dBs=

Z
0

�
�(s;Xs)d

�
B+

Z
0

�
�(r;Xr)¡1b(r;Xr)dr

�
s

;

we see that the key condition concerns integrabilty of (�¡1 b)(r;Xr). So � can be allowed
to be degenerate, but only at points where b becomes 0 at the same time.

We refer to Chapter 5.3.B from [14] for a deeper discussion on the topic.
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Extra comment on the literature (not examinable):
So far we showed that solutions to SDEs exist under similar conditions as solutions to

ODEs (cf. Theorem 8.11). But Proposition 8.22 shows that SDEs can behave much better,
and existence and uniqueness can be achieved in scenarios where the same is not true for
the corresponding ODE. An example is given by b=1f0g, cf. Example 8.4: for �=0 and
x0= 0 there exist no solutions, but for �=1 there exists a unique-in-law one. In fact in
this case the solution is given by Xt=�Bt, since then

R
0

t
1f0g(Xs)ds=0 for all t. The noise

drives us immediately away from the singularity 0 of our drift.
This is the simplest example of a regularization by noise phenomenon, where random-

ness helps improving the wellposedness of the system. In fact, a must stronger version of
Proposition 8.22 holds true, as was shown by Veretennikov [27] in the 80's: for bounded,
measurable drift b:R+�Rd!Rd and � = Id, strong existence and pathwise uniqueness
holds for the SDE. The proof is much more advanced and strongly relies on PDE tools.
There is a lot of ongoing research in regularization by noise phenomena; see [8] for a
monograph on the topic.

The following result is extremely useful and clarifies the relations between the various
notions of solutions and uniqueness thereof we have encountered so far. Point i. provides
a simple criterion for uniqueness in law, while Point ii. additionally guarantees strong
existence of solutions.

Theorem 8.24. (Yamada�Watanabe) Let b; � be locally bounded, measurable coeffi-
cients and consider the SDE ( 8.8). Then:

i. Pathwise uniqueness implies uniqueness in law.

ii. If there exists a weak solution (
; F ; F; P; � ; B; X) to the SDE and pathwise
uniqueness holds, then X is a strong solution, namely it is adapted to the (usual
augmentation of the) filtration generated by � and B.

Point ii. may be summarized as �weak existence + pathwise uniqueness) strong existence�.

Proof. See Chapter 5.3.D from Karatzas-Shreve [14], in particular Proposition 5.3.20 and
Corollary 5.3.23. �

The power of Theorem 8.24 lies in the fact that there are many situations where one
can develop ad hoc arguments to verify pathwise uniqueness and weak existence separately
(which then jointly imply both uniqueness in law and strong existence, so that we �get
everything�). It admits a less known, somewhat dual statement, due to Cherny [2].

Theorem 8.25. (Cherny) Let b;� be locally bounded, measurable coefficients and consider
the SDE ( 8.8). Assume that there exists a strong solution and that uniqueness in law holds;
then pathwise uniqueness holds as well.

Schematically: �strong existence + uniqueness in law ) pathwise uniqueness�.

Proof. We refer to [2] for the proof, which is omitted. The statement is less obvious
then what it might look like: to prove it, Cherny first shows that uniqueness in law for X
actually implies uniqueness in law for the pair (X;B), where B is the noise driving the
SDE satisfied by X. �

9 Further topics
This chapter contains a selection of more advanced results we might shortly touch upon
in the very final lectures of the course, due to lack of time. In fact, a fitting title for the
chapter could have been �Regrets�. Regardless of what we will be able to cover, the content
of this chapter is not examinable.
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9.1 Connections between SDEs and PDEs
In this section, we restrict our attention to SDEs with time-independent (also called
autonomous) coefficients, i.e. b:Rd!Rd and �:Rd!Rd�m are only functions of x.
For simplicity, we also assume them to be continuous and uniformly bounded , namely
there exists K> 0 such that

jb(x)j+ j�(x)j6K 8x2Rd;

for short, we will write b;�2Cb. Everything can be generalized to suitable time-dependent,
less regular, unbounded coefficients b; � (e.g. measurable and satisfying certain growth
conditions), at the price of additional technicalities.

Let X be a weak solution to the SDE

dXt= b(Xt)dt+�(Xt)dBt; X0= �: (9.1)

In the following, we write

Cb
1;2(R+�Rd) :=ff 2C1;2: f ; @tf ; @xif ; @xixjf are continuous and bounded in xg:

Lemma 9.1. Let b;�2Cb. Corresponding to the SDE (9.1), define the differential operator

Lf(x) := b(x)�rf(x)+ 1
2

X
i;j=1

d

aij(x)@xixjf(x); f 2C2(R2); (9.2)

where

aij(x) := (���)ij(x)=
X
k=1

m

�ik(x)�jk(x):

Let X solve the SDE (9.1). Then for all f 2Cb
1;2(R+�Rd) the following process is a

martingale:

Mt
f := f(t;Xt)¡ f(0;X0)¡

Z
0

t

(@t+L)f(s;Xs)ds:

Sketch of proof. By applying Itô's formula to f , using recursively the SDE satisfied by
X to compute hX i;X ji, one finds

f(t;Xt)¡ f(0; X0)¡
Z
0

t

(@s+L)f(s;Xs)=
X
i=1

d X
k=1

m Z
0

t

@if(s;Xs)�ik(Xs)dBsk:

Since we assumed � and @if bounded, the last stochastic integral is a genuine martingale
(and not just a local martingale). �

By virtue of the above result, the differential operator L as defined in (9.2) is often
referred to as the infinitesimal generator associated to the SDE (9.1).

Example 9.2. If b=0 and m=d and � is the identity matrix (i.e. if X is a d-dimensional
Brownian motion), then

L= 1
2
�

is simply (a multiple of) the Laplace operator.

Definition 9.3. (Kolmogorov backward equation) Let ':Rd!R be Borel measurable
and locally bounded. The partial differential equation (PDE)

@tu(t; x)=Lu(t; x); u(0; x)= '(x); (t; x)2R+�Rd; (9.3)
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is called the Kolmogorov backward equation.

Theorem 9.4. Let b;�2Cb, let X be a weak solution to the SDE ( 9.1) with random initial
condition �, and let u2Cb

1;2 be a solution to the Kolmogorov backward equation ( 9.3). Then

E[u(t; �)]=E['(Xt)] 8t> 0:

If for all x2Rd there exists a weak solution Xx to the SDE ( 9.1) with X0
x=x, then u is

unique and

u(t; x)=E['(Xt
x)] 8(t; x)2R+�Rd: (9.4)

Skecth of proof. The second claim immediately follows from the first one. For fixed t>0,
let f(s; x) :=u(t¡ s; x) for (s; x)2 [0; t]�Rd; then f satisfies

@sf(s; x)+Lf(s; x)=0 for (s; x)2 [0; t]�Rd; f(0; x)=u(t; x):

By virtue of Lemma 9.1, Mf is then a martingale on [0; t], so that

0=E[Mt
f]=E[f(t;Xt)]¡E[f(0;X0)]=E[u0(Xt)]¡E[u(t; �)]: �

Remark 9.5. Remark 9.6.

i. The theorem proves uniqueness and a stochastic representation for the solution u
to a partial differential equation, specifically the Kolmogorov backward equation,
but we had to assume that u exists (which would be an input from PDE theory).
We could also ask if it is possible to show that

u(t; x) :=E['(Xt
x)]

is indeed a solution, i.e. to prove existence. Under suitable regularity and growth
conditions on b; �; ' this is indeed possible, but the proof is quite technical (the
idea is to use suitable generalizations of Kolmogorov's continuity criterion to prove
that u2C1;2).

ii. As a simple consequence of the stochastic representation (9.4) we obtain the fol-
lowing maximum principle for the solution to the Kolmogorov backward equation:

sup
t>0;x2Rd

u(t; x)6 sup
x2Rd

'(x):

The differential operator Lu depends on partial derivatives of order 1 and 2. The-
orem 9.4 can be slightly generalized to include additional terms of order 0 (i.e. depending
on u itself); the proof of the next result is omitted.

Theorem 9.7. (Feynman�Kac representation) Let b; �; c2Cb and let u2Cb
1;2 be a

solution to the PDE

@tu=Lu+ cu; u(0)= ':

If for all x2Rd there exists a solution Xx to the SDE ( 9.1) with X0
x=x, then u is unique

and

u(t; x)=E

�
'(Xt

x)exp
�Z

0

t

c(Xsx)ds
��
:

As the name suggests, the backward PDE (9.3) admits another closely related PDE, of
forward type. To this end, we need some notations.
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We write P(Rd) for the space of probability measures on Rd; we say that a function �:
R+!P(Rd) is weakly continuous, and we write �2C(R+;P(Rd)), if for all '2Cb(Rd)
the function

R+3 t 7! �t(') :=
Z
Rd
'(x)�t(dx)2R

is continuous.

Definition 9.8. Let b; � 2Cb and let

L�f :=¡div (bf)+ 1
2

X
i;j=1

d

@ij(aijf); (9.5)

for a = ��� as before. A function � 2 C(R+; P(Rd)) is called a weak solution to the
Kolmogorov forward equation (also known as Fokker-Planck equation or master equation)

@t�=L��; �0= �� (9.6)

if for all '2Cc2 and all t> 0:

�t(')= ��(')+
Z
0

t

�s(L')ds:

The notation L� is meant to stress the fact that, at least formally, this differential
operator is the dual of the operator L previously defined in (9.2). In fact, whenever f and
g are regular enough functions (e.g. Cc1, infinitely differentiable and compactly supported)
and b; � 2C2, one can check by integration by parts thatZ

Rd
(Lf)(x) g(x) dx=

Z
Rd
f(x)(L�g)(x) dx:

Correspondingly, the PDEs (9.3) and (9.6) are dual to each other, or in a duality relation.

Theorem 9.9. Let b; �2Cb and let X be a solution to the SDE ( 9.1). Then �t := law(Xt)
is a weak solution to the Kolmogorov forward equation

@t�=L��; �0= law(�):

Sketch of proof. Clearly �t is a probability measure and �0= law(�). Moreover, since
X has continuous paths, it follows from dominated convergence that �2C(R+;P(Rd)).
Applying Lemma 9.1 to f = ' and taking expectation (so that the martingale term M'

vanishes), one finds

�t(')=E['(Xt)]

=E
�
'(X0)+

Z
0

t

L'(Xs)ds
�

=E['(�)]+
Z
0

t

�s(L')ds

where the last step follows from Fubini. �

So far we have only discussed time-dependent PDEs, which should be thought of as
evolutionary problems: given an initial prescribed profile (e.g. ' in (9.3)), we want to see
how it looks like at positive times, where it is given by u(t; �). However, static problems
also admit stochastic representations; here the prescribed boundary condition for the PDE
plays an important role.
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Definition 9.10. Let L be the differential operator from ( 9.2) and let D�Rd be a bounded
domain (i.e. open, connected and contained in a compact). Let  2C(@D). A function
u2C(D;R)\C2(D;R) solves the Dirichlet problem on D with boundary condition  if�

Lu(x)=0 for x2D;
u(x)=  (x) for x2 @D: (9.7)

The associated stochastic representation is given by the next statement.

Theorem 9.11. Let u 2 C(D;R) \ C2(D;R) be a solution to the Dirichlet problem.
Assume that for all x2D there exists a solution Xx to the SDE ( 9.1) such that

�D= inf ft> 0:Xt
x2 @Dg

is almost surely finite. Then u is unique and

u(x)=E[ (X�D
x )]; x2D:

Sketch of proof. Let x 2D, �D as defined above. By Lemma 9.1 applied to f = u,
Yt := u(Xt

x) is a (local) martingale started at 0, therefore (up to tehcnicalities involving
localizations) by the stopping theorem

u(x)=E[Y0]=E[Y�D] =E[u(X�D
x )] =E[ (X�D

x )]

since X�D
x 2 @D by definition. �

9.2 Local solutions and criteria for absence of blow-up
In applications one often encounters equations with coefficients that do not satisfy the
assumptions of Theorem 8.11. Recall for example the logistic growth model from Example 8.2
(with M =1 for simplicity):

dXt= r(1¡Xt)Xt dt+ �XtdBt: (9.8)

The quadratic function f(x) = r(1¡ x)x= rx¡ rx2 is not globally Lipschitz continuous
(f 0(x)= r¡2rx explodes as jxj!1) and it does not have linear growth (jf(x)j� r jxj2 as
jxj!1). On the other hand, it is locally Lipschitz continuous, so we know that uniqueness
holds; in analogy to ODEs, we still expect a solution to exist �locally�, only that it might
blow-up in finite time; furthermore since f(x) can only explode �with negative values� and
solutions should stay nonnegative (Xt models a population), it is reasonable to expect
blow-up not to happen in this case.

To prove this, we need to extend the SDE theory to allow for local solutions and to
develop criteria to exclude blow-up from happening.

Definition 9.12. Let (b; �) be as in Definition 8.5. We say that (
;F ;F;P; � ; B;X; � )
is a local weak solution to the SDE on [0; � ] if the following hold:

i. (
;F ;F;P; �; B) satisfy the same conditions as before;

ii. � is a F-stopping time and X = (Xt)t>0 is a d-dimensional continuous F-adapted
process;

iii. P-almost surely, for all t� 0 and i2f1; :::; dg it holds that

Xt^�
i = �+

Z
0

t^�
bi(s;Xs)ds+

X
j=1

m Z
0

t^�
�ij(s;Xs)dBs

j: (9.9)
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We say that X is a local strong solution on [0; � ] if X is G-adapted and � is a G-stopping
time, where G is the (augmented) filtration generated by (�;B).

One can readily readapt the concept of pathwise uniqueness in this case (specifically,
given two local solutions (X; �1) and (Y ; �2) on the same reference space, they must
coincide on the common interval of existence [0; � 1^ � 2]).

Proposition 9.13. Assume that the coefficients b and � are locally bounded and moreover
locally Lipschitz: for all T > 0 and n2N there exists KT ;n such that

jb(t; x)¡ b(t; y)j+ j�(t; x)¡�(t; y)j6KT ;njx¡ y j

for all t 2 [0; T ] and jxj; jy j6 n. Then, for any F0�measurable initial condition �, there
exists a local strong solution X to the SDE, defined till any stopping time �U of the form

�U = inf ft> 0:Xt2U cg

where U is an open bounded set in Rd. Furthermore, this solution is pathwise unique.

Sketch of proof. Consider a sequence of cutoff functions f'ngn, namely infinitely diff-
entiable 'n:R+�Rd!R such that

'n(t; x)= 1 for t2 [0; n] and jxj6n; 'n(t; x)=0 for t>n+1 or jxj>n+1

(such sequences can be shown to exist). Correspondingly, define the coefficients

bn := b'n; �n :=�'n:

By construction, for fixed n, (bn; �n) are globally Lipschitz and bounded, therefore by
Theorem 8.11 there exists a strong solution to the associated SDE; denote it by Xn.
Correspondingly, define �n := inf ft> 0: jXtj>ng.

Let m>n; since bn(t; x)= bm(t; x) as long as t6n, jxj6n, arguing as in the proof of
Theorem 8.11, it follows that the solutions Xn and Xm coincide, as long as they both do
not leave the ball of radius n. As a consequence, one can consistently define a stochastic
process X (adapted to the filtration G) on [0; �n] by

Xt^�n :=Xt^�n
n ;

by construction, X is a local solution to the SDE on [0; �n].
Given U bounded open set, we can then take any n such that U �Bn, where Bn=

fx2Rd: jxj<ng, and correspondigly define

�U = inf ft> 0:Xt2U cg= inf ft> 0:Xt
n2U cg: �

Remark 9.14. Let b; � be differentiable in x with continuous @ib and @i�; then by the
mean-value theorem, b and � are locally Lipschitz continuous.

Definition 9.15. Under the hypothesis of Proposition 9.13, consider the stopping time

�� := lim
n!1

�Bn; where Bn= fx2Rd: jxj<ng:

�� is called the explosion time of the SDE with coefficients (b; �) and initial condition �
and (X; ��) is called the maximal solution to the SDE starting at �.

Remark 9.16. By definition, it holds

sup
t2[0;�n]

jXtj<1; lim
t!��

jXtj=+1:
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In this sense, X is a maximal solution because it is no longer extendable to intervals [0; �~]
with �~>��.

Definition 9.17. In the setting of Definition 9.15, we say that X is a global solution if
explosion does not occur, namely if

P(��=+1)= 1:

To show that blow-up does not occurr, there is a general class of techniques based on
a priori estimates and Lyapunov functions (cf. also Exercise Sheet 14). The most basic
Lyapunov function, which is often enough in applications, is V (x)= jxj2, as the next result
shows.

Proposition 9.18. (A priori estimate under weak coercivity) Assume that the
following weak coercivity condition holds: for all T > 0 there is KT > 0 such that

2b(t; x)�x+ j�(t; x)j26KT(1+ jxj2); (t; x)2 [0; T ]�Rd:

Let � be F0�measurable, � 2L2 and let X be a local solution to the SDE on the interval
[0; � ]. Then

E[jXt^� j2]6 (E[j� j2] +Kt t)eKtt 8t> 0: (9.10)

Proof. The argument is very similar to that of Proposition 8.14. Let

�~n= inf ft> 0: jXtj>ng; �n := �~n^ �

so that jXt
�nj6 j� j _n and so X is a local bounded solution to the SDE on [0; �n]. We will

apply Itô's formula to jXt
�nj2. For that purpose note that

@ijxj2=2xi; @ij jxj2=2�ij ;

and that using recursively the SDE we have

hX i; X jit^�=
X
k=1

m Z
0

t

�ik(s;Xs)�jk(s;Xs)ds;

thus

jXt
�nj2= j� j2+

X
i=1

d Z
0

t^�n
2(Xs

�n)ibi(s;Xs
�n)ds+

X
i=1

d X
k=1

m Z
0

t^�n
�ik(s;Xs

�n)2ds

+
X
i=1

d X
k=1

m Z
0

t^�n
2(Xs

�n)i�ik(s;Xs
�n)dBsk

Since � is locally bounded and everything is stopped, the last term (in integral form) is a
genuine martingale, therefore taking expectation on both sides we end up with

E[jXt
�nj2] =E[j� j2]+E

�Z
0

t^�n
(2Xs

�n�b(s;Xs
�n)+ j�(s;Xs

�n)j2)ds
�

6E[j� j2]+E

�Z
0

t^�n
Kt(1+ jXs

�nj2)ds
�

6E[j� j2]+Kt t+Kt

Z
0

t

E[jXs
�nj2]ds:

The conclusion then follows by Gro�nwall's lemma. �
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Combining the previous results, one can deduce a stronger global well-posedness result
than our previous Theorem 8.11, which only allowed global Lipschitz coefficients with linear
growth:

Theorem 9.19. Assume that the following local Lipschitz and weak coercivity conditions
hold: for any T 2 (0;+1) and n2N, there are KT ;n;KT > 0 such that for all t2 [0; T ]:

jb(t; x)¡ b(t; y)j+ j�(t; x)¡�(t; y)j6KT ;njx¡ y j 8jxj; jy j6n;
2b(t; x)�x+ j�(t; x)j26KT(1+ jxj2) 8x2Rd:

Then for any F0�measurable initial condition �, the associated maximal solutionX is global:

P(��=+1)= 1:

In particular, global strong existence and pathwise uniqueness hold for the SDE.

Sketch of proof. First assume � 2L2. The local Lipschitz conditions ensures existence
of a maximal solution X on [0; ��), where ��= limn!1�

n. For fixed m2N, by (9.10) and
Fatou's lemma we have

E[jXm^��j2]6 liminf
n!1

E[jXm^�nj2]6 (E[j� j2] +Kmm)eKmm:

But since jX��j=+1, it follow that jXm^��j= jXmj P¡ a:s:, namely P(��>m) = 1. As
the argument holds for all m2N, conclusion follows.

The case of general � can be handled similarly to the proof of Theorem 8.11. �

Example 9.20. (Logistic growth model) Recall the logistic growth model (9.8) from
the beginning of the section, so that b(x)= r(1¡x)x and �(x)= �x. Since the coefficients
are locally Lipschitz, for any initial condition � we know that there exists a pathwise unique
maximal solution X to the SDE, defined on [0; ��).

Notice that Y � 0 is also solution to the SDE (started at 0). Then by the comparison
principle (Sheet 14, which can be extended to the more general situation considered here),
if X0= � >0 P-a.s., then we must have Xt>0 for all t2 [0; ��) (as it should be: if the model
is meaningful, the population should never get negative).

Exploiting this fact, the coefficients become monotone for x2R+: indeed b satisfies

b(x)x=r(1¡x)x2= rx2¡ rx36 rx2

as long as x> 0. As a consequence, solutions do not blow-up for this SDE and we recover
strong global existence and pathwise uniqueness for (9.8).

9.3 The martingale representation theorem
Let (
;F ;P) be a probability space carrying a Rd-valued Brownian motion B; in this sec-
tion, we fix the reference filtration F=(FB)+;P is the usual augmentation of the canonical
filtration of B.

We have seen throughout examples that, while the stochastic integrals

Mt=
Z
0

t

hs � dBs

with deterministic integrands h are quite rigid (they are centered Gaussian), general inte-
grand H 2Lloc2 (B) can display a much reacher behaviour.

In fact, one can show that any Brownian random variable of mean zero can be realized
as a stochastic integral:
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Theorem 9.21. (Martingale representation theorem in Rd, version 1) Let B be a
d-dimensional Brownian motion, let F=(FB)+;P be the (augmented) canonical filtration
of B. If Z 2 L2(F1;P), then there is a unique H 2 L2(B) (i.e. H is progressive and
E[
R
0

1jHsj2ds]<1), such that

Z =E[Z] +
Z
0

1
Hs � dBs=E[Z] +

X
i=1

d Z
0

1
Hs
idBsi: (9.11)

Ideas behind the proof. The result can be established by abstract Hilbert space theory
(similarly to what we did in Lemma 6.6) in three main steps:

Step 1: uniqueness. Let H1, H2 be such that (9.11) holds, then we findZ
0

1
(Hs

1¡Hs
2) � dBs=

Z
0

1
Hs
1 �dBs¡

Z
0

1
Hs
2 � dBs=0

from which we conclude by Itô isometry that H1�H2 in L2(B).
Step 2: �special classes of martingales�. For deterministic integrands h2L2(R+;Rd),

one can prove that the collection of associated exponential martingales

X = span
�
E(h)1= exp

�Z
0

1
h(s) � dBs¡

1
2

Z
0

1
h(s)2ds

�
:h2L2(R+;Rd)

�
is dense in L2(F1).

Step 3: existence. Consider now the collection of random variables admitting a repre-
sentation of the form (9.11):

Z =
�
Z 2L2:Z =E[Z] +

Z
0

1
Hs � dBs for some H 2L2(B)

�
:

The goal is to show that Z=L2. To this end, it suffices to show that Z is closed and dense
in L2. Z being closed follows again from Itô isometry, while Z being dense follows from
Z containing X : since exponential martingales themselves solve SDEs, we have

E(h)1=1+
Z
0

+1
E(h)shs � dBs

which gives the explicit formula for H for processes in X . �

Theorem 9.21 has the important consequence that any Brownian local martingale can
be represented as a stochastic integral w.r.t. B; in particular, Brownian local martingales
are always necessarily continuous.

Theorem 9.22. (Martingale representation theorem in Rd, version 2) Let B
be a d-dimensional Brownian motion and let F= (FB)+;P be the (augmented) canonical
filtration of B. For every R-valued càdlàg local martingale M with M02L1 there exists a
unique Rd-valued process H 2Lloc2 (B) such that

Mt=E[M0]+
Z
0

t

Hs�dBs 8t> 0;

in the sense that the two processes are indistinguishable. In particular, M is almost surely
continuous.

Ideas behind the proof. There are three main steps.
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Step 1: square integrable martingales. First assume M be uniformly integrable with
M12L2. Then applying Theorem 9.21 to H =M1 one finds

M1=E[M1] +
Z
0

1
Hs�dBs=E[M0] +

Z
0

1
Hs�dBs

from which the formula at time t follows by conditioning w.r.t. Ft on both sides. It is also
clear that such process H is unique, by Itô isometry as before.

Step 2: localization. Given a càdlàg local martingale M , one wants to first show that
there exists a localizing sequence (�n)n such thatM1

�n2L2 for all n. This is technically more
challenging than it looks, because we do not know whether M is continuous, so standard
hitting times won't work (the process M could jump exactly at the hitting time and get
�much higher� than the desired barrier n). Still, at the end of the day one can succeed in
constructing such (�n)n.

Step 3: conclusion. Applying Step 1 to M1
�n one gets

M1
�n=E[M1

�n] +
Z
0

1
Hs
n�dBs=E[M0]+

Z
0

1
Hs
n�dBs:

By properties of stochastic integrals and uniqueness of the martingale representation it
then follows that Hn=H1[0;�n] for some progressive H 2Lloc2 (B). �

Remark 9.23.

i. The martingale representation theorem shows that every local martingale in a
Brownian filtration is almost surely continuous. So the condition F= (FB)+;P is
necessary, otherwise discontinuous martingales exist: consider for example Mt=
Nt¡ �t for a Poisson process N with intensity �> 0, which does not have a con-
tinuous modification.

ii. Here is another counterexample to illustrate the necessity of the condition F=
(FB)+;P: Let B and W be independent Brownian motions and assume that for the
random variable W12L2 we have

W1=W0+
Z
0

1

HsdBs=
Z
0

1

HsdBs

for some H 2L2(B). Then we get the contradiction:

1=E[W1
2] =E

�
W1

Z
0

1

HsdBs

�
=E

��
W;

Z
0

�
HsdBs

�
1

�
=E

24Z
0

1

HsdhW;Bis||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
�0

35=0:

The martingale representation theorem can be used to describe the only possible effect
of an equivalent change of measure on the dynamics of Brownian motion.

Corollary 9.24. Let B be a Rd-valued Brownian motion and let F= (FB)+;P be the
(augmented) canonical filtration of B. Let Q�P be an equivalent probability measure.
Then there exists a unique Rd-valued process H 2Lloc

2 (B) such that

Zt=
dQjFt
dPjFt

= exp
�Z

0

t

Hs �dBs¡
1
2

Z
0

t

jHsj2ds
�

8t> 0;

and under Q the process

B~ =B ¡
Z
0

�
Hsds

is a d-dimensional Brownian motion.
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Proof. We know that the density process Z is a uniformly integrable (càdlàg) P�martin-
gale (cf. Lemma 7.20), so in particular Z is almost surely continuous by Theorem 9.22.
Moreover, Zt>0 almost surely for all t>0 by Lemma 7.21, and thus there exists a stochastic
logarithm L2Mloc

c with

Zt= exp
�
Lt¡

1
2
hLit

�
; t> 0:

We have Z0=E[Z0] = 1 by Blumenthal's 0-1 law, and therefore L0= log Z0= 0. By the
martingale representation theorem we can thus write

Lt¡
1
2
hLit=

Z
0

t

Hs �dBs¡
1
2

Z
0

t

jHsj2 ds

for a unique H 2Lloc
2 (B). The final claim follows from Girsanov's theorem. �

Remark 9.25. This result shows that, in a Brownian filtration, the only possible effect
of switching to an equivalent probability measure is to add an absolutely continuous driftR
0

�
Hsds to B, with derivative in L2([0; t]) for all t> 0, i.e. such that

R
0

t jHsj2ds<1. This
is a (closed subspace of) the Sobolev space Wloc

1;2(R+;Rd). Such functions
R
0

�
Hs ds are

sometimes called Cameron-Martin paths.

Appendix A Probability theory background material

A.1 Gaussian random variables
We recall here several fundamental facts about Gaussian random variables. We start by
considering the one-dimensional case.

Definition A.1. (Gaussian/normal distribution) A random variable X is called stan-
dard Gaussian or standard normal, and we write X�N (0;1), if it has probability density

f(x)= 1
2�

p e
¡x2

2 :

Let m 2R and � > 0. A random variable Y has the Gaussian distribution, or normal
distribution, N (m;�2) if there exists a standard normal variable Z (namely Z�N (0; 1))
such that

Y =m+�Z: (A.1)

Equivalently, Y �N (m;�2) if and only if its characteristic function is given by

E[eiuY ]= eium¡�
2u2/2; u2R: (A.2)

A random variable Y is a centered Gaussian (or centered normal) if it has distribution
N (0; �2), namely m=0.

Exercise. Let X�N (0; 1). By direct computation, show that

E[e�X]= e
�2

2 8�2R

and that

E[e� jX j
2
] =

8<: +1 if �> 1/2
1

1¡ 2�
p if �< 1/2 :

Probability theory background material 153



Let Y �N (m;�2). Recall that if � > 0, then Y has a density

f(x)= 1
2��2

p e
¡ x2

2�2:

For �=0 we have P(Y =m)= 1. Recall also that

m=E[Y ]; �2=Var(Y ):

Remark A.2.

i. If Y �N (m; �2) and Y~ �N (m~ ; �~2) are independent Gaussian random variables,
then (A.2) yields that Y + Y~ �N (m+m~ ; �2+ �~2). Namely, sum of independent
Gaussian variables is still Gaussian.

ii. If Y �N (m;�2), then �Y �N (m;�2�2). Moreover if Y �N (0; �2), so that Y =�Z
for some Z�N (0; 1), then for any p> 0 it holds:

E[jY jp]=�pE[jZ jp] =E[Y 2]p/2 cp;

for cp=E[jZ jp]2 (0;1). So up to a constant cp, the p-th absolute moment of Y is
simply the second moment raised to the power p

2
.

Exercise. It is not true for general centered random variables that E[jY jp]6CE[jY j2]
p

2.
Can you find a centered random variable Y with E[Y 2]

p

2 <1=E[jY jp] for some p> 2?

The following result shows that Gaussian random variables are in some sense very rigid:
the limit in distribution of Gaussian random variables still has to be Gaussian.

Lemma A.3. Let (Xn)n2N be a sequence of Gaussian random variables such that Xn�
N (mn; �n

2). Then (Xn) converges in distribution to a random variable X if and only if
there exist m 2R and �> 0 such that mn!m and �n! �. In that case X�N (m; �2).
Moreover, if (Xn) converges even in probability to X, then (Xn) also converges in Lp to
X, for any p> 1.

Proof. (Sketch of proof) By Lévy's continuity theorem (Stochastik 1 or Theorem 15.23
in [15]), convergence in distribution is equivalent to pointwise convergence of the char-
acteristic function. It is easy to see that if mn!m and �n! �, then the characteristic
functions converge. Conversely, assume that Xn converges in distriution to some X.

Step 1: Taking the absolute value of the characteristic function, we see that �n2 converges
to some �2 2 [0;1]. The case �2=1 can be ruled out because then the limit of the
characteristic function would be 1u=0 which is discontinuous, while any characteristic
function is continuous.

Step 2: Now that we know that (�n) converges, we obtain that (mn) is bounded: Other-
wise along a subsequence (Xn) would converge in probability to �1, which is incompatible
with weak convergence.

Step 3: (mn) has at most one limit point in R: If there were two limits m and m0, then
along different subsequences (Xn) would converge weakly to different limits N (m;�2) resp.
N (m0; �2), which is impossible because we assumed weak convergence.

It remains to show that if Xn¡!
P
X and p> 1, then even Xn¡!

Lp

X. From the previous
considerations and because convergence in probability implies convergence in distribution
we know thatmn!m and �n2!�n. In particular, for any q>1 there existsKq>0 such that

sup
n

E[jXnjq]6 sup
n
Kq(E[jXn¡mnjq] +mn

q)= sup
n
Kq(Cq�n

q+mn
q)<1:
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Taking q=2p, we deduce from the de la Vallée-Poussin criterion (Stochastics II) that (jXnjp)
is uniformly integrable. By another result from Stochastics II, this yields Xn¡!

Lp

X . �

Next, we study the Rd-valued case, which in some sense can be reduced to the real-
valued case:

Definition A.4. Let d2N and let X be a random variable with values in Rd. Then we say
that X is (centered) Gaussian or (centered) normal if for any u2Rd the linear combination

u �X =
X
j=1

d

ujXj

of the entries of X is (centered) Gaussian. We also call (X1; :::;Xd) jointly Gaussian.
Equivalently, there existm2Rd and a symmetric positive semi-definite matrix C2Rd�d

such that X has the characteristic function

E[eiu�X]= eiu�m¡(u
TCu)/2; u2Rd:

Moreover,

E [u�X]=u�m; var(u�X)=uTCu:

We say that X has mean (or expectation) m and covariance C and write X�N (m;C).
X is centered if and only if m=0.

Exercise.

i. Easy: If X =(X1; :::; Xd) is Gaussian, show that Xj is a one-dimensional Gaussian
for all j=1; :::; d.

ii. Easy: �Linear functions of Gaussians are Gaussian�: LetX be anRd-valued Gaussian
random variable and let A 2Rn�d. Show that AX (matrix times vector) is an
Rn-valued Gaussian random variable. In particular, if X �N (m;C), then AX�
N (Am;ACAT).

iii. Hard: If X1 and X2 are one-dimensional Gaussian random variables, is it true that
(X1; X2) is a two-dimensional Gaussian? Or can you find a counterexample?

If m= 0 2Rd and C = I 2Rd�d is the unit matrix, X is an N (0; I) variable if and
only if (X1; :::;Xd) are independent standard Gaussians. Indeed, for independent standard
Gaussians we get

E[eiu�X]=
Y
j=1

d

E[eiujXj] =
Y
j=1

d

e
¡1

2
uj
2

= e¡
1

2
uTIu= e¡

1

2
juj2
:

In particular, for any d2N there exists a d-dimensional N (0; I) variable.

Lemma A.5. Let m2Rd and let C 2Rd�d be symmetric and positive semi-definite.

i. There exists (a probability space with) a random variable X �N (m; C): Just let
Y �N (0; I) and

X :=m+ C
p

Y ;

where C
p

is the square root of C, that is the unique symmetric and positive semi-
definite matrix such that C

p
C

p
=C (such a C

p
always exists).
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ii. �Uncorrelated Gaussians are independent�: Let X�N (m;C). Then the coordinates
(X1; :::; Xd) are independent if and only if C is a diagonal matrix.

iii. Let X �N (m; C). Then X has a density pX with respect to the d-dimensional
Lebesgue measure if and only if C is invertible. In that case

pX(x)=
1

(2�)d/2(det (C))1/2
exp

�
¡1
2
(x¡m)TC¡1 (x¡m)

�
: (A.3)

Exercise.

i. Let (X;Y ) be jointly Gaussian and such that cov(X;Y )= 0. Show that X and Y
are independent. In particular, if X and Y are centered and jointly Gaussian, this
implies that orthogonality is equivalent to independence.

ii. Formulate point iii. for the special case d=1.

Exercise. Extend point i. of the previous exercise to the following one: if (Xt)t2T and
(Ys)s2T0 are jointly Gaussian centered processes, then (Xt)t2T and (Ys)s2T0 are independent
if and only if E[XtYs] = 0 for all t2T and s2T0.

Hint: reduce to finite-dimensional distributions by Dynkin's lemma, cf. Lemma A.10.

Example A.6. Let Y ;Z be independent with Z�N (0;1) and P(Y =1)=P(Y =¡1)= 1

2
.

Let X1=Z and X2=YZ. Then X1�N (0; 1), and

E[eiuX2]=E[E[eiuZY jY ]] =E[e¡(uY )
2/2] = e¡u

2/2;

where we used that Y 2=1. So also X2�N (0; 1). Moreover,

cov(X1;X2)=E[X1X2] =E[YZ2]=E[Y ]E[Z2] = 0 � 1=0:

But of course (X1;X2) are not independent: Knowing X1, we know jX2j with certainty.

Exercise. Why does this example not contradict point ii. of the previous lemma? And
can you solve the hard part iii. of the long blue question right before Lemma A.5 now?

A.2 Dynkin's lemma and monotone class theorems
Let us briefly discuss two versions of the monotone class theorem, which will be useful
throughout the lecture. We will often be able to verify some property for particularly simple
random variables, and then ask ourselves whether the property holds for a larger class of
random variables. This can often be shown with the help of monotone class theorems. We
follow Appendix 4 of [7].

Let 
 be a set. We write 2
 for the subsets of 
. Recall the following definition:

Definition A.7. A family D� 2
 is called a �-system, or also a Dynkin system, if

i. 
2D;

ii. if A;B 2D with A�B, then B nA2D;

iii. if (An)n2N�D are increasing, i.e. An�An+1 for all n, then
S
nAn2D.

A family E � 2
 is called a �-system if it is closed under finite intersections:

A;B 2E ) A\B 2E:

156 Appendix A



Exercise. (elementary, but less trivial then it looks!) Verify that D is equivalently
a �-system if the following hold:

1. 
2D;
2. if A2D, then Ac2D;
3. if (An)n2N�D are pairwise disjoint, then

S
nAn2D.

Theorem A.8. (Dynkin's �-� theorem, also called Dynkin's lemma) Let D� 2

be a �-system and let E �D be a �-system. Then �(E)�D.

Proof. Probability I, or Theorem 4.2 from [7]. �

Definition A.9. Let A be a �-algebra on 
. We say that E is a basis for A if E is a
�-system and �(E)=A.

[Comment: the terminology �basis� in this context is not fully standard and not adopted
by many authors, but convenient for this appendix]

Exercise. Use Dynkin's lemma to prove the following fact: if �, � are two probability
measures on (
;A) and E is a basis for A, then �= � on (
;A) if and only if �(A)=�(A)
for all A2A.

Let us quickly recall some relevant cases of bases:

� On R, the collection of closed intervals R := f[a; b]: a < bg form a basis for B(R);
same for open intervals f(a; b):a<bg, or unbouded intervals f(¡1; a]:a2Rg, etc.

� On Rd, the collection of closed rectangles Rd := fA=�i=1d AijAi2Rg are a basis
for B(Rd).

� Given a topological space (E;�), the collection � of open sets form a basis for B(E);
same for the collection of closed sets.

� If (E1;A1) and (E2;A2) are measurable spaces, Ei are bases for Ai and we endow
E1�E2 with A=�(A1�A2) the product �-algebra, then the �rectangles�

RE1�E2 := fA=A1�A2jA12E1; A22E2g
form a basis for A.

� Given n2N, t1; :::; tn2R+ and B1; :::; Bn2B(R), consider the set

E= f! 2RR+ : !(ti)2Bi for i=1; :::; ng;

let E denote the collection of all such sets, upon varying n, ti and Bi. Then E is a
basis for B(R)
R+.

Exercise. LetX1,X2 be random variables taking values in two measurable spaces (E1;A1)
and (E2;A2) and let Ei be bases for Ai. Using Dynkin's lemma and the last point from the
above bullet list, show that X1 and X2 are independent if and only if

P(X12A1; X22A2)=P(X12A1)P(X22A2)

for all A12E1 and A22E2.

Lemma A.10. Let (Xt)t2T and (Ys)s2T0 are (real-valued) stochastic processes, over (pos-
sibly different) index sets T and T0. Then (Xt)t2T and (Ys)s2T0 are independent if and only
if (Xti)i=1

n and (Ysj)j=1
m are independent, for all n;m2N and all (ti)i=1n �Tn, (sj)j=1m �

(T0)m.
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Exercise. Prove the above lemma.

Theorem A.8 only concerns sets, but naturally leads to results concerning monotone
classes of functions. Such results are extremely useful whenever one wants to establish
certains properties being true for a large class of functions f , upon only verifying them
for simpler cases (typically f =1A for some �nicely chosen� A). We present two versions of
such results.

Theorem A.11. (Monotone class theorem I) Let H be a vector space of bounded real-
valued functions on 
 and E be a �-system. Assume that

i. H contains all constant functions;

ii. 1A2H for all A2E;

iii. if (hn)n2N is an increasing sequence of positive functions in H such that h :=
limnhn� 0 is bounded, then h2H.

Then H contains all bounded �(E)-measurable functions.

Proof. See Theorem 4.3 from [7]. �

Exercise. LetX;Y be independent random variables taking values inRd;Rm respectively;
let f :Rd�Rm!R be a measurable bounded function. Use Theorem A.11 to prove that

E[f(X;Y )jY ](!)= g(Y (!)) for g(y) :=E[f(X; y)]

where E[ � jY ] denotes conditional expectation w.r.t. �(Y ).

In the next statement, given a family of functions C from 
 to R, we denote by �(C)
the �-algebra generated by C, i.e. the smallest �-algebra on 
 such that f : (
;�(C))!R is
measurable for all f 2C. Equivalently this is the �-algebra generated by the sets f¡1([a;b]),
for [a; b]�R and f 2C.

Theorem A.12. (Monotone class theorem II) Let H be a vector space of bounded
real-valued functions on 
 such that

i. H contains all constant functions;

ii. if (hn)n2N�H converges uniformly to h, then h2H;

iii. if (hn)n2N is an increasing sequence of positive functions in H such that h :=
limnhn� 0 is bounded, then h2H.

If C �H is closed under pointwise multiplication (that is, fg 2C whenever f ; g2C), then
H contains all bounded �(C)-measurable functions.

Proof. See Corollary 4.4 from [7]. �

Exercise. (hard) Given a probability measure � on R+, we define its Laplace transform
by

L�(a): =
Z
R+

e¡ax�(da) 8a> 0:

Apply Theorem A.12 to prove that L� characterizes uniquely �, in the following sense: if
� and � are two probability measures on R+ such that L�=L�, then �= �.

158 Appendix A



Bibliography

[1] Mathias Beiglböck and Pietro Siorpaes. Pathwise versions of the Burkholder-Davis-Gundy inequality.
Bernoulli , 21(1):360�373, 2015.

[2] A. S. Cherny. On strong and weak uniqueness for stochastic differential equations. Teor. Veroyat-
nost. i Primenen., 46(3):483�497, 2001.

[3] Giuseppe Da Prato and Jerzy Zabczyk. Stochastic equations in infinite dimensions , volume 152 of
Encyclopedia of Mathematics and its Applications . Cambridge University Press, Cambridge, Second
edition, 2014.

[4] Claude Dellacherie and Paul-André Meyer. Probabilities and potential , volume 29 of North-Holland
Mathematics Studies . North-Holland Publishing Co., Amsterdam, 1978.

[5] G. Di Nunno and Yu. A. Rozanov. On measurable modification of stochastic functions. Teor.
Veroyatnost. i Primenen., 46(1):175�180, 2001.

[6] Rick Durrett. Probability: theory and examples . Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, Cambridge, Fourth edition, 2010.

[7] Stewart N. Ethier and Thomas G. Kurtz. Markov processes: Characterization and convergence . John
Wiley & Sons, 1986.

[8] Franco Flandoli. Random perturbation of PDEs and fluid dynamic models , volume 2015 of Lecture
Notes in Mathematics . Springer, Heidelberg, 2011. Lectures from the 40th Probability Summer
School held in Saint-Flour, 2010, École d'Été de Probabilités de Saint-Flour. [Saint-Flour Probability
Summer School].

[9] Peter K. Friz and Martin Hairer. A course on rough paths . Universitext. Springer, Cham, 2014.
With an introduction to regularity structures.

[10] Peter K. Friz and Nicolas B. Victoir. Multidimensional stochastic processes as rough paths , volume
120 of Cambridge Studies in Advanced Mathematics . Cambridge University Press, Cambridge, 2010.
Theory and applications.

[11] J. van der Hoeven et al. GNU TeXmacs. https://www.texmacs.org, 1998.
[12] Jean Jacod. Mouvement brownien et calcul stochastique. Unpublished lecture notes, https://

www.lpsm.paris//cours/DEA-07.pdf, 2008.
[13] Jean Jacod and Albert N. Shiryaev. Limit theorems for stochastic processes . Springer, 2nd edition,

2003.
[14] Ioannis Karatzas and Steven E. Shreve. Brownian motion and stochastic calculus . Springer, 1988.
[15] Achim Klenke. Probability Theory - A Comprehensive Course . Springer, 2008.
[16] Jean-François Le Gall. Brownian motion, martingales, and stochastic calculus , volume 274 of Grad-

uate Texts in Mathematics . Springer, 2016.
[17] Thomas M. Liggett. Continuous time Markov processes , volume 113 of Graduate Studies in Math-

ematics . American Mathematical Society, Providence, RI, 2010. An introduction.
[18] Peter Mörters and Yuval Peres. Brownian motion , volume 30 of Cambridge Series in Statistical and

Probabilistic Mathematics . Cambridge University Press, Cambridge, 2010. With an appendix by
Oded Schramm and Wendelin Werner.

[19] J. R. Norris. Markov chains , volume 2 of Cambridge Series in Statistical and Probabilistic Mathe-
matics . Cambridge University Press, Cambridge, 1998. Reprint of 1997 original.

[20] Bernt Øksendal. Stochastic differential equations . Universitext. Springer-Verlag, Berlin, Sixth edi-
tion, 2003. An introduction with applications.

[21] Martin Ondreját and Jan Seidler. On existence of progressively measurable modifications. Electron.
Commun. Probab., 18:0, 2013.

[22] Philip E. Protter. Stochastic integration and differential equations . Springer, 2nd edition, 2004.
[23] Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion . Springer, 3rd edition,

1999.
[24] L. C. G. Rogers and David Williams. Diffusions, Markov processes, and martingales. Vol. 2 . Cam-

bridge Mathematical Library. Cambridge University Press, Cambridge, 2000. Itô calculus, Reprint
of the second (1994) edition.

[25] Pietro Siorpaes. Applications of pathwise Burkholder-Davis-Gundy inequalities. Bernoulli ,
24(4B):3222�3245, 2018.

[26] Daniel W. Stroock. Probability theory . Cambridge University Press, Cambridge, Second edition,
2011. An analytic view.

[27] A. Ju. Veretennikov. Strong solutions and explicit formulas for solutions of stochastic integral
equations. Mat. Sb. (N.S.), 111(153)(3):434�452, 1980.

[28] Heinrich von Weizsäcker and Gerhard Winkler. Stochastic integrals . Advanced Lectures in Mathe-
matics. Friedr. Vieweg & Sohn, Braunschweig, 1990. An introduction.

Bibliography 159

https://www.texmacs.org
https://www.texmacs.org
https://www.texmacs.org
https://www.lpsm.paris//cours/DEA-07.pdf
https://www.lpsm.paris//cours/DEA-07.pdf
https://www.lpsm.paris//cours/DEA-07.pdf
https://www.lpsm.paris//cours/DEA-07.pdf
https://www.lpsm.paris//cours/DEA-07.pdf
https://www.lpsm.paris//cours/DEA-07.pdf
https://www.lpsm.paris//cours/DEA-07.pdf
https://www.lpsm.paris//cours/DEA-07.pdf
https://www.lpsm.paris//cours/DEA-07.pdf


160 Bibliography


	Introduction and motivation
	Literature
	Notation and conventions

	1 Gaussian processes, pre-Brownian motion and white noise
	1.1 Gaussian processes
	1.2 White noise and Brownian motion

	2 Brownian motion and Poisson process
	2.1 Continuity of stochastic processes
	2.2 Some path properties of the Brownian motion
	2.3 The Poisson process

	3 Filtrations and stopping times
	3.1 Filtrations and stopping times
	3.2 Progressively measurable processes
	3.3 Applications to Brownian motion

	4 Martingales in continuous time
	4.1 Path regularity
	4.2 Martingale inequalities and stopping theorems

	5 Continuous semimartingales
	5.1 Processes of finite variation
	5.2 Brownian motion and prelude to stochastic integration
	5.3 Continuous martingales and quadratic variations
	5.4 Continuous local martingales
	5.5 Continuous semimartingales

	6 Stochastic integration
	6.1 Stochastic integrals of simple processes
	6.2 Stochastic integration w.r.t. Brownian motion
	6.3 Stochastic integration w.r.t. M∈H^\(2,c\)
	6.4 Stochastic integration w.r.t. M∈M^c_loc
	6.5 Stochastic integration w.r.t. continuous semimartingales
	6.6 Approximations of stochastic integrals

	7 Main theorems of stochastic analysis
	7.1 Itô's formula 
	7.2 First applications of Itô's formula
	7.3 Girsanov's theorem

	8 Stochastic differential equations
	8.1 First examples
	8.2 Solution concepts
	8.3 Existence and uniqueness under global Lipschitz conditions
	8.4 Weak solutions and uniqueness in law

	9 Further topics
	9.1 Connections between SDEs and PDEs
	9.2 Local solutions and criteria for absence of blow-up
	9.3 The martingale representation theorem

	Appendix A Probability theory background material
	A.1 Gaussian random variables
	A.2 Dynkin's lemma and monotone class theorems

	Bibliography

